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ABSTRACT

This report is in two volumes and describes results of a study of associative

processing techniques performed by Libra'scope Group of General Precision

Inc. under RADC contract AF 30(602)-3756. Volume I is an unclassified/

document and contairi all the material in the report except that concerning

the ELINT reconn issance problem which is contained in Volume II.
/"•~~~~~f ohm Ii ~sid document at the SECRET level.

Two associ ,tlve processors are formulated and evaluated. The first

processoyI named the associative file processor (AFP), utses a small

associa ive memory, in conjunction with a large head-per-track disc
/

file,/to affect content search and retiieval from large formatted files stored

o2)/the disc. The processor als,) allows efficient updating of large, highly

/,ynamic data bases. The applications of AFP in the manipulation of existing/
sea surveillance files and command-control data bases are investigated in

7/ detail. In these tasks, the processor offers a reduction of several orders

of magnitude in query response times relative to both presently used equip-

ment and previously proposed associative techniques. A query language,

presently used in a command and control system, is shown to be suitable

for use with this processor.

The second processor, named the associative parallel processor (APP),

is optimized for simultaneous processing of many data elements as they

reside in memory. This processor is evaluated for use in the real-time

solution of large network-flowor resource-allocation tasks, and also for

the real-time reduction of ELINT reconnaissance data. It is shown that,

for large problems of either type, the processor offers order-of-magnitude

reductions in solution times over conventional methods. Improvements in

solution times are such that real-time solutions of important tasks in each

problem area are feasible.

All processor configurations presented are based on mechanizations which

can be implemented in a practical and economic manner with presently

available electronic circuits and memory components. Other applications

of these techniques are recommended and further development and study

areas are suggested.
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1.0 INTRODUCTION

This report appears in two volumes and describes results of a study of associa-

tive processing techniques performed by the Librascope Group of General Precision

Inc., undcr RADC contract AF 30(602)-3756. The study herein reported is a contin-

uation of a previous effort funded under RADC contract AF 3o(602)-33711,2. During

the previous study, Librascope formulated two associative processors. The rirst

processor was optimized to the task of pattern recognition; the second processor

was optimized for retrieval of documents, cla.sified Uy a set of descriptors such

as are used in the Defense Documentation Center (DDC) retrieval system. The

present study has further refined each processor organization, has extended the

defined range of application for each processor and has provided quantitive

performance evaluations for each application investigated.

Recent years have seen intensive investigations of digital computer organizations,

command sets, and usage methods which represent distince departures from

conventional Von Neuman techniques. Much of this effort has as objectives the

formulation and efficient solution of non-numeric problems for which conventional

techniques are not effective. Complex non-numeric problems frequently allow

partitioning of the computational task into many independent subtasks, which

may be allocated over many identical machine elements with interchange of

results among machine elements. This, together with rapidly developing capa-

bilities for batch fabri-ation and interconnection of computer components, has

led to investigation of distributed or parallel computing networks consisttig of

many identical computing cells, interconnected in an iterative itructure. Examples

of such machines include the Holland machine, the Solomon computer And various

pattern recognition devices such as the ILLIAC III computer. The associative

processors described in this report are also machines A this class.



We feel that the promise of associative processing techniques lies more in their

ability to implement novel and demanding machine requirements, implied by non-

numeric computing tasks, than in their ability to speed solution of presently

solvable problems. Developnrent of novel cellular organization allows machine

solution of important new classes of problems, in addition to solution of larger

problems of presently solvable types. Accordingly, we have developed associative

techniques for content search and retrieval from large formatted data files, for

adaptive pattern recognition, for ELINT pulse train sorting and for solution of

network flow problems.

The file processing task is implemented by an associative file processor (AFP)

which is a variant of a more restricted mnahire-developed under the previous

contract for retrieval of Defense Documentation Center (DDC) documents. The

data bases, taken as models for the file processing task, were the present Navy

Sea Surveillance Data Base and the present Headquarters ASAF (473-L) Command

dnd Control Data Base. In Chapter 2 of this report, the AFP is structured and

programmed for file manipulation tasks required by these problems. A user-

oriented query language, suitable to each problem environment is described.

The efficiency of AFP in this application is evaluated relative to that of presently

used equipment and to that of the Goodyear Associative Processor (GAP), now

unde'r development for RADC.

The associative pattern processor, developed by Librascope under previous RADC

contract, evaluates threshold logic functions by techniques which may be readily

exLended to transform all or any part of memory contents according to any

boolean function of memory contents and external variables. The organization,

logic, and command structure for this processor are thus applicable to a variety

of other problems which allow parallel processing. In the sequel, we term this

processor the "Associative Parallel Processor", APP to denote its general

utility.
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Chapter 3 of this report described the application of APP to network flow or

resource allocation oroblems. These problems arise in a variety of logistAc

or tactical environments, in which each of many resources may be allocated to

each of many ends, with some cost or return known for each possible allocation.

The APP is programmed for optimum solution of several variants of this problem

in near real time. Solution rates are compared to those available from state-of-

the-art processors of conventional organization.

Applicability of APP to ELINT pulse-train separation is investigated in Chapter

4, which is classified SECRET and appears in a second separate volume. The task

is defined, the APP is programmed for its solution, and solution rates are again

compared to those available from conventional machines.

These studies collectively illustrate the utility of associative techniques in two

broad areas of non-numeric data processing. The first usage area is content

search and retrieval from large data bases stored in inexpensive mass-storage

media. The second area is simultaneous processing of many data elements as

they reside in memory.

Each application area has a distinct machine organi.zation, AFP and APP

respectively, best suited to it. The rationale for each machine organization

and a summary of its performance in selected applications are presented in the

balance of this report. Each of these machines is structured such that it is

practically realizable using available technology. For example, the associative

memories for these machines can be built using plated wire memory elements

described in Appendix C. Timing calculations for the processors are based

on this realization.

3
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1. 1 ASSOCIATIVE FILE PROCESSOR

Important features of the associative file processor (AFP) are as follows:

1) The data base is stored on a relatively inexpensive head-per-track

disc file, since it is felt that true associative storage of large data

bases would be prohibitively expensive~both now~and in the foreseeable

future. Further economies are provided by using only a single read-

write head on each disc track.

2) A large portion of the file (e. g., 1024 tracks) is content searched in

a single disc revolution (e. g., 40 ms). The comparison operators:

equality, inequality, greater than, less than or bounded search, are

each available as search modes. Rapid search is possible through

use of an extremely high data rate (i. e., highly parallel) transfer

path from the file to a controlling associative memory. Data is

transferred simultaneously from many disc tracks to corresponding

words in associative memory. This fast transfer path is necessary

if search time is not to be obscured by the time to transfer data to

the associative memory.

3) The AFP requires only a small associative memory (e. g., 1024 words

of 64 bits) to control search oi a much larger data base (e. g., 3 X 108

bits). Each bit of the associative memory is a tag bit used to denote

some block of disc storage as matching a search criterion. Elements

of the data base are never transferred into the associative nemory.

4) The AFP performs all operations requisite to efficient manipulation

of a large highly dynamic data base. The present Navy Sea

Surveillance Retrieval System and the Headquarters ASAF (473-L)

Command and Control System were used as models for the data base

and for operations on the data base. The AFP performs the search

and retrieval tasks and also the file maintenance tasks requisite to

these environments. I4



5) Records are retrieved from the disc or written onto the disc in

"gather read, scatter write" fashion. In a single disc revolution,

records may be retrieved from many tracks or written into available

space on many tracks. For each of these operations, disc accesses

are controlled by contents of the associative memory, set during a

previous search.

Through its possession of the foregoing features, AFP offers the important

advantages of content search and simple memory management, usually associated

with list structured files, without incurring the speed disadvantages of sequentially

scanning lists and of linkage modifications required to insert or delete records.

AFP incurs some storage inefficiency through the use of a fixed record format.

However, it is felt that storage efficiency will generally compare favorable with

that of list-structured files, due to the elimination in AFP of explicit attribute

(field) names, linkage addresses and reference dictionaries.

The data base structure and machine organization for AFP are described in

Chapter 2, together with a query language suitable to its intended use. Response

times are determined for sample queries derived fromthe Sea Surveillance task.

Comparison of these times to equivalent times developed for the Goodyear

Associative Processor (GAP) show that response times for AFP are several

orders of magntiude less than equivalent times for GAP. Query response times

for AFP are relatively independent of both query content or complexity and file

size, neither of which is true for list-organized files or for GAP.

1: 2 ASSOCIATIVE PARALLEL PROCESSOR

The associative parallel procesior (APP), develored, by Librascope under previous

RADC contract, was recognized a's having utility beyond the picture processing

application for which it was designed. Under the present contract, further studies

were undertaken to extend the range of defined applicability for this machine and

to determine the extend to which the machine organization would vary with problem
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environment. Two further applications for APP were investigated. The first is

optimum solution of network flow or resource allocation tasks. The second is

processing electromagnetic intelligence (ELINT) data. It was found that APP

was applicable to each problem with only slight modification and that significant

operational advantages acrue to its use. The results of each study are further

described.

1. 2. 1 The Use of APP in Solution of Network Flow Problems

The applicability of an associative parallel processor (APP) to the solution of

network flow problems is investigated in Chapter 3. The network flow problem

is couched within the model of the so-called Hitchcock-Koopmans transportation

problem. Three variations on this model are considered, and are listed in their

order of model complexity.

1) Binary assignment problem

2) General assignment problem

3) Transportation problem

An APP is formulated which can solve any of these three variations of this model.

The formulation of the APP includes a description of the organization, a description

of the command set and the timing requirement for the commands. A comparison

of this APP with a previous APP formulated for pattern recognition is made.

Algorithms for the solution of the three variations considered for network flow

problems are presented. From these algorithms, programming flow diagrams and

detailed APP machine language programs are written which describe how the APP

solves these problems. From the flow diagrams and machine language programs.

a timing estimate is made to determine the time the APP requires to solve each

of these three variations.

To provide P basis for comparison, the solution times are estimated for a

serial processor to solve each of these three variations on the network flow

problems. Finally, a timing comparison is made between the APP and the serial

6
processor.
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From the study presented in Chapter 3, it is concluded that:

1) The APP has a timing efficiency factor of from one to three orders of

magnitude over its serial processor counterpart for the three variations

of network flow problems considered. The one order of magnitude

factor is applicable for smaller matrices, of around 30 X 30 size,

whereas the three orders of magnitude factor is applicable for the

larger matrices, of around 1000 x 1000 size.

2) The timing requirement for the three variations increases approxi-

mately linearly or in idrect proportion to "n", the order of the cost

matrix, for the APP, whereas it increases nearly in proportion to

" "n '3, or the cube of the order of the cost matrix, for the serial

processor.

3) The APP can determine optimum solutions for network flow problems,

even for large inatrices of the order 1000, in milliseconds, which must

be considered as virtual real time in respect to human operator

reaction time. In contrast, for a matrix of the order 1000. the serial

processor requires from the order of several seconds for the binary

assignment problem to the order of several minutes for the trans-

portation problem, which certainly cannot be considered as real time

for most applicacions.

4) The basic structure of the APP is identical with that of an APP

* previously formulated for pattern recognition. However. it is found

that several new features are required for matrix manipulation

purposes.

5) The matrix manipulating feature of this APP gives it a utility for

solving other types of problems with matrix manipulation requirements,

including, for instance, linear programming. dynamic programming,

matrix inversion and boundary value problems.

7

S... .. .. .• w | " |lU r II• I | m w... -ft



6) Many examples of the network flow problem have a virtual real-time

processing requirement. The weapon assignment problem and

message switching to optimally distribute messages in a complex

command and control system are examples. For these problems,

the APP can provide real-time solutions, whereas the serial

processor cannot. Any additional reasonable cost factors of the

APP over the serial processor can certainly be justified for these

types of problems.

1. 2.2 The Use of APP for Processing ELINT Reconnaissance Data

In Chapter I, contained in Volume II with a SCR•CT classification, the ELINT

reconnaissance problem is investigated, to determine the feasibility of

employing an APP to process this reconnaissance data in real time. The ELINT

problem Is described, together vith an algorithm for its solution.

An APP is then structured and programmed according to this algorithm.

The proposed ELINT processing algorithm consists of three cycles, namely:

Mode I - Pulse train sorting

Mode II - Emitter Position determination

Mode III - Verification of emitters

Flow diagrams, machine language programs and timing calculations are

given for each of three modes. The most time consuming processing step

is the pulse train sorting cycle of Mode I.

A tradeoff study is made between an ELINTAPP and a state-of-the-art

sequential processor. Cost estimates for each machine are provided. The

sequential processor is programmed to perform the ELINT task. Processing

times are determined and compared to those for the SLINT APP.

8



1. 3 CONCLUSIONS AND RECOMMENDATIONS

The studies herein reported demonstrate the utility of associative processing

techniques for information retrieval and also for parallel processing of

data as it resides in associative memory. The associative file processor

(AFP) illustrates that small associative memories, used in a control

capacity, can greatly facilitate search and retrieval of formatted records

from a large data base, and are also of significant use in memory manage-

ment tasks. Order of magnitude reductions in query response time are

obrained with AFP, relative to use of other known retrieval techniques.

The use of associative retrieval techniques significantly affects the

manner of organizing a data base into a mass file, since files should be

fixed format tabular rather than list structured. AFP does not have appreciable

effect on the grammar or syntax of a user-oriented query language. It was found,

for example, that the present 473-L query language is quite suitable for use with

AFP.

e
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Our studies have shown that the organization and command set for the associative

parallel processor (APP) are useful with little change for picture processing, for

solution of network flow problems and for processing ELINT reconnaissance data.

In particular, the associative microcommand, which establishes search criteria

for words requiring a particular transformation and defines the required trans-

formation of these words, has direct utility in all three problem areas. This is

not surprising, in view of the generality of the concept of "sequential state

transformatiou" upon which the command is based.

The three problems, investigated for solution by APP, are particularly amenable

to parallel processing, since each may be solved by algorithms which execute a

single operation simultaneously over many data elements. Problems, allowing

this high degree ot parallelism, will generally be solvable by APP in times

appreciably less than for conventional sequential solution. The time gain depends

on the number of data elements which may be independently processed. For all

problems studied, the speed advantage of APP was one to three orders of magnitude.

over conventional processing. Associative memories of 1024 to 2048 words are

suitable to each application studied.

Librascope studies, together with other similar studies sponsored by RADC.

clearly illustrate the importance of integrating an associative memory into the

over-all system, rather than adding it as an afterthought. The efficiency of the

associative parallel processor is strongly dependent on the close integration of

an instruction memory and various search control devices with the associative

array. The efficiency would decrease considerably if the associative array were

peripherally controlled by a conventional computer through a conventional date

transfer path.

10



For the associative file processor, the important interface is that between the

associative memory and the disc file. Unless a highly parallel transfer path

is provided at this interface, data transfer time will vitiate any speed gain due

to associative search.

The Librascope studies also clearly show the importance of the multiwrite
function to effective associative processing. It has long been 'ecognized that a

multiwrite capability is requisite to associative parallel processing. Our studies

of APP further illustrate the utility of associative parallel processing and thus

of the multiwrite function. More important., we show that multiwrite is a

necessary feature for effective associative file processing, sin4;e it allows

realization of the highly parallel transfer path shown necessary for effective file

processing.

Based on our studies of associative techniques and on related studies by others,

we feel that additional efforts should be undertaken in the following areas:

1) Utilization of present application studies: It is felt that both AFP

and APP could be built, using presently available technology to yield

significant improvements in present operating systems. An AFP

machine of moderate size has been shown by the present study to have

real utility for command and control information retrieval. The

APP machine allows an important increase in the ability to perform

real-time processing of ELINT reconnaissance data. It can also

perform complex weapon assignment or other network flow tasks in

* real time,

2) Further applications studies: Present digital message switching

systems represent outgoing queues as list structures in memory.

The AFP organization lends itself to associative manipulation of

storage. Also, the APP organization seems suitable to quick.look

iI
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scanning of space telemetry data in real time. Such scanning would

be of significant help in gaining real-time knowledge of monitored

events and also in selecting telemetry types for later, more detailed

processing.

3) Further development of technology:

a) In particular, more efficient means for performing the multiwrite

operation into associative arrays should be developed. The size,

cost and power dissipation of semiconductor word electronics,

presently available to perform this function, would preclude the

function from realization in systems of sufficient capacity for'

some important applications. We feel that plated wire realizations

of multi write word electronics, compatible with plated wire

associative arrays, merit further investigation.

b) More effective match storage and match resolution circuitry should

be developed. Plated wire devices merit further study for this

function as well.

c) Following feasibility demonstrations of the above devices, an

experimental associative processor of either the APP or the AFP

variety should be built. Operational experience gained with these

processors will aid significantly in further development of

associative processing technology and in the demonstration of its

utility.
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2. 0 ASSOCIATIVE PROCESSING OF FORMATTED FILES

2.1 INTRODUCTION

In developing applications of parallel file processing, it is helpful to
review *briefly the evolution of data retrieval techniques as they apply
to datp base structure. The most primitive technique is the use of address
calculation with fixed format records. This is of limited applicability,
where the data base is dynamic, . e., continually changing, because of
severe memory management problems. Another severe handicap exists
in that data retrieval can be done only on the field for which the address

can be calculated.

As information science evolved, great progress has been made through
the use of list-structured files and serial or sequential -list processing.
Through list processing, problems were alleviated in memory management,
data access and freedom of record format. List processing, however, is
time consuming,.As by and large, in order to retrieve data, files must be
traversed sequenti'ally following the linkages from one record to the next.

List processing enables the use of a very important aspect of data retrieval;
namely, content search, which is fundamental because of the inherent
association of a transaction or query with the cnntents of certain recordsS

of a file. When a list-structured file is being sequentially processed,

record by record, the retrieval criteria can apply readily to record content.

Associative techniques have been explored pre'-iously, in an attempt to speed
up list processing. However, these efforts have not met with much success
because the processing has remained sequential. Any significant speed
improvement requires some form of parallel prucessing, which implies
doing a content search over many records simultaneously. As demonstrated
in, this section, associative techniques are a great asset in parallel pro-
cessing, provided no exhaustive data transfers are needed, wh.:h eat up

more time than se&rching.

The development of data r*trieval techniques may boviewed from another
evolutionary standpoint, primarily associated with hardware capability.
The simplest content search is for a single criterion applied sequentially

13
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to a single record at a time. The next step in complexity is to apply multiple

criteria to a single record at a time, i. e. , to do a multiple search. As the

records are the same for all searches, the speed advantage is the number

of searches that logically can be done simultaneously. This is usually not

a great number.

More complex yet, because of hardware implications, is the scheme of

applying a single search criterion to a multipi'city of records in parallel,

which gains a speed advantage directly proportional to the degree of parallel-

ism. This is the level of the parallel file processor described in this

section.

The ultimate in speed is achieved by doing a multiple search over a

multiplicity of records, which may be effective where the whole data base

is a single file, organized for multiple searching. A machine of the latter

type applicable to retrieval of fixed format DDC (formerly ASTIA) records,

was developed by Librascope under a previous RADC contract

With the objective of doing parallel file processing, it is necessary to

examine the data base organization, particularly the record formats. In

section 2. 2, format constraints, requisite to parallel file p:ocessing, are

examined. Section 2. 3 presents a machine organization suitable for

parallel processing of filcs stored on a head-per-track disc file. Section

2. 4 describes a query language suitable to parallel file processing.

114



2.2 PARALLEL FILE PROCESSING

2M2.1 Introduction

This section prennts a critical examination of the current trend in

data processing, namely, the serial or sequential processing of list-

structured files. It also presents a technique that promises signif-

icant advantages in speed, namely, parallel processing by associative

techniques, and compares para&lel processing with serial processing,

both as to applicability and relative advantages. It is concluded

that, within the restriction of properly formatting data, parallel

processing offers important advantages, not only in lessened retrieval

time, but also in relative ease of use for memory managemnt and data

access*

I
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2.2*2 List Structuring of Files

There has developed in the Information Storage and Retrieval

(IS and R) community a strong tendency to organize large data

bases into list structured files6 That is, the members

of each file are identified by being linked or strung together as a

list, rather than say, by physical location. Justification for iast

structuring of files and the use of serial processing for data re-

trieval is given in terms of:

1) Advantages in memory management.

2) Ready access to all stored data.

3) Responsive representation of the nature of the data.

The, current approach to data retrieval from a list-structured data

boas is based on content search using serial processing. In real-

time, dynamic-data-base/ query systems, the need is to retrieve

records by content, because of the inherent association of trans-

actions or queries with certain records in the data base. Content

search of the data base is natural and efficient, in that it elimin-

ates record position determination.

Hlardware and algorithms, as well as data 0ase structure, are

orioeted toward fast, officient, serial searches of large bloc, s of

-s.o-ed data, or else toward rapid path tracing through stored relat-

torships, expressed by linkaPs, until the desired items are found.

This mods of processing is time oonsming. It is not eected that

m,, 16



this problem will be alleviated by improvements in conventional

computer hardware, since computer system serial processing speeds

are rising slowly compared to the increasing need for fast data

retrieval from large data bases.

As it is the purpose of this study to determine the applicability of

parallel processing to content retrieval within large data bases, it is

expeditious to examii* the data b se structuring in more detail.

I

kI

oI
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2.2.2.1 Memory Management

The term. memory management, applies to the task, usually catagorized

as "bookkeeping., of allocating space in storage as it is required.

Space.my be required when existing dynamic files in the data base

acquire new members, or when new files are generated and must be stored.

Deleting records or files makes space available, and the efficient use

of storage elements requires that mrans must be provided for reuse of

this space.

Dynamic storage allocation is traditionally accomplished via an "available

space" list, in vhich eapty data spaces are strung together to form a list,

just as is each file. When a new item appears, it is assigned the first

"cell on the available space list, and newly emptied cells are lineked to

the end of the list. Thus, the files in the data base may be of indeter-

minant sise without undue inefficiency in storage space requirements.

The available space technique for memory management is particularly

effective when the data base is stored in random access memory, that is,

when there is no preferential aspect to the storage location of any given

Item. However, the latter property is not true of currently available

bulk memory dsvices, namely, disc memories. The result is that file

entries in the data base get scattered all over the disc, with no concern

for the access tin required to go from one item in a file to the

next, using the linkage that strings the file together. So far, no

technique has been develod for assigning available apace on a

preferential basis, rather than as next available', so that the

18
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penalty in access time in tracing th. ough a list structured file is

just accepted. This access time tends to swamp out computer proces-

sing time and to constitute the limit on reduction of dati retrieval
(\

time.

2.242.02 Data Access

It is apparent that access to any desired stored item in a data base

can be virtually guaranteed using list structured files. FAch file

must have associated with it an identification or classification of

the contents of the entries in some sort of an index or directory.

Then, when a query is presented, the requested data types are matched

against the file directories and the proper files are consulted.

Many files do not involve data sets with intrinsic order relationships.

At best, in special cases, such as personnel files, one, or a very few

order relationships exist. Thus, although an explicit ordering exists

in a list structured file, in the usual case of data retrieval, a file

entry point at which to start searching cannot be specified. This

implies paying the heavy penalty in access tim retrieving item after

item, assuming the file occupies random disc locations generated by

the forementioned techniques of memory management.

In some applications, this relatively slow access is aceeptable,

particularly where any separate searches or retrievals are con-

current. A succes•ftl technique is to queue disc access requests

and sort them into tiwe sequence, reducing apparent sacess tim,

A strong multiprcgraumng capability is required, and there is no

increase In speed of response •o any given request.

S~19
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Because of the format problems, and to help better express the intrinsic

relationships among the data, other structurings have been explored,

7
•opcifically the graphic nods-relationship form has been studied,

In this form, the concept of "entity" is exploited. Each nods corresponds

to an individual person or thing, or a classification of individuals. The

graphical representation consists of laying out all the nodes and then

drawing in pertinent directional relationshV lines connecting related

nodes. In the reference a comfortably small number of types of relation-

ship lines seem to suffice to represent a diverse amour.t of data in a

data base.

The graphical node-relationship representation of a data base is mention-

ed, not because of its potential value for parallel processing, for this

kind of graph traversal is eminently a serial process, but because of the

explicit treatment of "entity" and "relationship" as concepts in date

base structuring. Entities, again, are individuals, such as persons,

places, or things, or classifications and characteristics of individuals

Exa•Vcles aret Capt. R. Owens, Griffiss Air Force Base, the Valley Forge

(individuals), Commanding Officer, Airfield, Aircraft Carrier (classifi-

"cations), and Age, Elevation, and Haximu Speed (characteristics). The

relationships most readily expressed in a node-relationship graph are

qualitative: for example, " is C1 exale of","is a conponent of,

" is located at", "is a typical". These relationships apply among

various individuals and clssfications.

Qaantative relationships do ttot yield so radily to such a graphica)

rpr~jja;tation, as Lhey tsa values of characterisa.ics •a ap,"led
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Ii
to individuals or classes. A t6rnary relationship is introduced

in the forementioned reference to ha.•v23 quantitative relation1ship3,

with the cumbersome introduction of every value or physical quantity

in the data base as a separate node in the graph. Clearly?, the dif-

ficulty of traversing such a graph for a content search is compounded

by this strategy.

From a study of a graphical nods-relationship graph representing a

data base, a definite conclusion can be drawn, namely, that struct -

uring files as lists of entries is a format choice and not an intrinsic

property of the data. It also helps clarify the inherent nature of a

data base in distinguishing entities and relationships which will be

of use in formatting files for parallel processing.

The preceding sections have shown that serial processing and list struct-

uring of files both have serious limitations, particularly in the speed

of processing. They show that neither concept is it:herent in a data

base structure, or in the processing requirements per so. Therefore,

Ll considering parallel processing concepts to iprov file processing

speeds, it is not unreasonable to reconsider data formats and choose

file structures that enhance parallel processing.

2

S~23

I,



2.2.3 Parallel Processing of Fixed Format Files

The primary purpose of parallel processing of files is to attain a

high processirg rateimplying short data search and retrieval times.

The objective is to make each entry in a file, and, in fact, each

field in each entry, equally transparent to a parallel content search,

and to establish a correspondingly efficient retrieval of desired data.

Parallel processing of files involves the parallel-by-track reading of

an assigned region of a disc memory containing the file of interest, and

a simul.taneous field-by-field comparison of each bit stream with the

search criteria, flagging for subsequent retrieval those records which

qualify.

The searchable fields of the records in a file .o be processed in Dar-

allel must be in a fixed format. That is, like fields must appear in

like places from record to record, so that only one field is searched

for the required criterion in. each bit stream at a-y given instant of

time. This is because the search criteria, derived from the query,

gunorally specify several fields and required values in hese fields.

A variable fo.-mat would require looking for all field identification

marks and all field values every character tim, which would overload

atV reasonable device.

',thle all records vithir, a file must conform to the format chosen for

the file, thorm is no constraint, or even preference, with regard to

the saarh, related to the sequence of fields within the record formIt.

All fields are equally tra.nsparmnr to the search. for example in thie
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VrP filo in the sea surveillance task (See Section 2.2.3.2), it is

no disadvantage to have the ship identity field follow tne VIP name

field, as the ship namo field can be bearched just as readily as it

can be in the ships' file. An important advantage of having all fields

transparent to an associative search is elimination of the need to

sort files on each search criterion of interest.

In this discussion, as well as in the suceeeding hardware :scrip-

tion, it is assm md that a single mechanism performs a single search

at a time. While duplicate search equipment could, presumably, double

the search rate, other, more subtle chanres, such as doubling the disc

speed, could achieve the sam result. Accordingly, the matter will

not be considered further.

I
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2.2.3.1 Blocks and Block Flags

DiSc memory tracks have a fixed nunber of bits and it is natural to divide

then into a number of sectors or blocks of uniform length. Ono dirrot

advantage in the ability to use fixed addressing. Rowever, any given

block length is not going t? suit all of the files in a data base with-

out wasting sam space. It •s normally necessary to dissociate block

length and record lenit, whioh, is done by miking provision for nulti-

block roords. That is, the formatted, searchable portions of file

entries m oovpy several adjacent blocks. The block le~th then be-

comes a scm hat arbitrar parenter and can be optimised for any part-

icular Job.

Significant advantages in memory managemnnt and data retrieval ar cor.-

comitant with the assumption of fixed block length. Those come abouL

by the use of flags, ssigned on a block-by-block basis, and stored

elsedere than in the data storage blocks themselves.

Memory managment, that is, the accounting for and allocation of disc

storage pace as required, is facilitated by the use of an "obsoleeo"

or e*ptr flag associated with each block. As no ordering exists in the

obsolete flags,, space can be assigned at software option. The secific

technique *hich is very effective is to assin to a new record the first

(in tUm) obsolete slot (of on* or more blocks) that can be written into

within a qsecifid region (i.e., a soft-wro -defined set of tracc) of

disc vmoarys his has three advantages over the use of an available list,

nmsly, aseos tUM is reduced, records can be seepeatd into regions

under saotvare eotrol, and •to assignment ad writing of the meord are
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purely hardware functions. In the case of' rnuti-bloc;, records, a:;

additiotial header block flag is needed to identify permissive bloc",s

in which to start writing (see secliorn 2.3.6). The obsolete an~d header

block f'lags can cotivenient~ly be stored in dedicated tracks- ir. the disc

namry.-'y provided only that they are t%'L-ed to appear with their associa-

V~ ted blocks.

DMa access by content search is fraci1 ii aied 'iy the use of cor~are i'la[gs

ona block-by-b2.ock, basis. Since [~he parallel search is -,Ocha.-ized as a

block-by-block coetparison, bOut records, r~kt.Io:. '.h& blocly.s. qualIf'; %,'d

are read, it is rec0ssary .o do ope!'& io.- c the compare flats. Add;-

lon~ally, siastisLics miay 'ýe wa:,;ed a.Cor- a searci, r~ihor L't~a:. roadi--'-

qualify'ing records. For .heso :-easo s, iL' -s of ad-.a.'Lam, to hod c't. o

co.Vzra f1ag:3s ut a. speccial -itcry. cx a-* r .o ý'tc disc. i ' ific'i u A

ba operated ont i-ý parallel.

Thus, the fixed format structurirng of a da,,i c-ase for parali&' p.'ocoss! F,,

ruth~r thart ist 3strue *Uritr:?, for Se:'1ial PIrOCessi, of'fers 3i~tiflcart,

advartages for memoory mana~erint a:-d data mt~rlaval, when combn~c" w- "h

.;ui'tAblc hardware elemneits. Greaiter co- *t n vi.~h lu3s effort, m'.y be

exrcised by tho softvara i.- 3toraerc :POCe assirMnWoý, *!or* i: iii

afttr a parallel march, to which a uiio file 13 .r nsp;r*-L, the dsenired

records ar. dirvetly acccsaiýýI* for re~di.-g ard further 'rc~i~



2.2.3.2 Data Structure and Required File Formats

This section is addressed to some of the problems and difficulties

encountered In attempting to structure or lay out a data base in fixed-

format1 parallel-content-searchable files.

Record versus block length has been treated in the previous section

and will not be treated further, except to remark that sometimes field

length and processing convenience can be traded off against each other.

Variable-length records arise when file entries contain raw, unformatted

data, such as "comments", or when there are multiple tabular entries.

The raw data portion of a record is more or less intrinsically unsearch-

able, and no capability is lost by storing it separately, with a linkage

in the formatted part of the record.

When file entries have more than one value for specific position, the

format problem has been solved by allowing variable-length, variable-

format records. This is done at significant storage expense, for each

descriptor value must have the descriptor name associated with it. This

technique may be bebt illustrated by an example taken from the sea surveil-
5

lance task In one apprvach, a ships dynamic file is main-

tained, which lists among other things, VIP's aboard each ship. As the

nurber of VIP's is variable from ship to ship, the number of VTP fields

is variable, and, furthermore, changes from time to time. Since the IMP

fields within the given ship's record have non-predictable positions,

each must be identified within the record as a VIP field.

The above variable length record, rilth descriptor name-descripLor value

pairs, can be eliminnated by recognizing a VIP as an entity. Since there

are many VIP' s and they all sometimes have the property of beirg aboard

28



one ship or another, this constitutes a topic, and a file can be generated.

This file will have the VIP as the primary entity, and, as he can, at most

be aboard one specific ship, have boarded at one specific tiai, nave one

specific function and destination, the tile can have a fixed record format.

The preceding example suggests that using the concepts, described in see-

tion 2.2.2.3, of entity and relationship, a file in a data base can be

looked upon as a matrix. The rows and columns correspond to entities,

and the matrix elements themselves to qualitative or quantitative relat-

ionships, A measure of the tractability of the data base and of the

quality of file design is the number of null elements in the files. This,

as does record length, affects primarily the storage efficiency, with

little direct effect on data retrieval capability or speed of parallel

processing.

An inportant guide to file structure is to include all possible

relationships of the file entries within one file. This avoids

ever having to determine the intersection of two searches, which

cannot be done in parallel, and is, tberefore, a slow, serial pro-

cess. For exw'ple, take the sea surveillance task. It is highly

undesirable to require searches on both a ships' dynamic file and

a ships' static file in response to a query. fThse searches will,

in general, come up with with two tables of ships' ewNs (as in

the query considered in the next section), and the nmes comon

to both tables ouet be found for the query respense.

29

Ib
I



The alternative technique is to maintain a single ships' file with

both" dynamic and static data in each ship's entry. For parallel I
processing, som positional relationship of data must exist and

it not readily obtained any other way.

The concept of subfiles is also useful in formatting a data base.

Drawing on the provious example, a ship's static data may differ

widely in content, depending on whether the ship is a passenger,

merchant, or naval vessel. However, the dynamic data format may

be identical for all ships. Processing techniques can be devised

that will apply a search to a subset of file entries or to the whole

file as desired.

The preceding discussion strongly suggests that the requirement

to organize the files of a data base into rigid fixed format or

tabular form may not be as restrictive as it may ar first appear.

What restrictiveness there is may well be more than offset by the

gain in processing speed by virtue of parallel processing. A by-

product advantage of retrieving from fixed format files is that

the data is in a natural and effective format for output to an

inquirer, or for further processing Lnto a graphic visual display.
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2.2.3.3 Processing Rates

To illustfate the effectiveness of parallel processing, as compared

with some serial processing techniques proposed, including the

employment of associative memories, the following

approximations to search and retrieval times are derived. It is

assumed that the data base resides in disc memory and one or more

searches and retrieval occur in response to a query.

Search and retrieval times:

1) Disc memory and computer:

TI !. N T N

2) Disc memorv, computer and auxiliary associative menory:

2 Y + N X 2

3) Disc memory with parallel processor and computer:

T " ( k+1) T + kcNx
3 1 23

One ret

N is the number of records i-, the file, or the nuaber of

directory entries that mst be searched.

m Is the number of records per block transferred at a tim

from Jist (in cas 2, equal to associative memory size). 4
T is disc revolution time

(T/2 is the average access tim to disc mamory).

U



is oomputer serial comparison and processing time per

record.

x2 is computer processing and transfer time per record using

the auxiliary associative memoz7.

xz is computer processing tim per record.

y is the auxiliary associative maory processing tim per

block of records.

k is the number of blocks of each record that must be searched.
1

k 2  is the fraction of the records that satisfy the search.,

Coments:

a) If N is very large, it may be appropriate to use less than

T/ such as T/5 or T/lO, as disc read requests nay be
2'

batched and tim sequenced; neverthless, with N large,

N T X>T.

b) It has been found that, with small associative memries,

Ný go N y + N x 2, andtin either casen the processing

tim is wamped out by the disc access tim so that

Tj U T2.

e) T3 has tim kIT for search and T for read. If k2 is reasonably

small and, assuing x1 and x2 are roughly equal,

T3-w(kI + 1) T,1ndapendent of N up to relatively large M.
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As an exazvple, Averbach 2 considers the sea surveillance data base5 ,

and the query, "Nearest (in time) ship/aircraft with aircraft

aboard with doctor to point x,yf. With the assumption of only 32 records

in the data base, the disc retrieval time is quoted as being 7.2 seconds,

over 35 time the processing time required. It in to be noted that the

processing is done largely in an auxiliary associative mmory, showing a

slight improvement over doing it in the OPC alone. For each additional

32 records in the file, an additional 1.2seconds retrieval tim is needed.

Using parallel processing,, by contrast, about two searches and one re-

trieval process are needed; one search on the ships' static data, to

establish doctor and aircraft aboard, and one on ships dmamic date in

the same file to determine the ships that are in a region aroung point xy.

This requires three tisc revolutions (3T) independent of file sie up to

several thousand (instead of 32) records per file.

In addition to the search and retrieval time, there is processing time

required to find the miniuma time in response to the query. This processing

tim will be small if k2N is =all; that is, if the search on the shIps'

dynamic data (for location) is sufficiently delimiting.

For representative disc memories, a revolution time (T) is 50 to 70 milli-
seconds, establishing the parallel processing tim as 0.15 to, say, 0.25

second#. In the referenced exa&ple, the retrieval tim is

I!(access tims) a 1.2(5. N)soyia

Theme are ooqparsd in the following tablet

33
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Records per Serial Retrieval Parallel Processing
file Timn Time

N

32 7.2 sec 0.25 see

1,000 44.4. 0.25

10,000 390. 0.5 *

* As ingt V0e aroh 14 -C N but a N/2 reords in parallel.

The above ezales ew hatieally iflustratse:

a) That serial proesseing, uhen disc retrieval times are taken

into account, is very slow for real-time earch and retrieval,

even with moderate siaed files and a multi-directory approach; and

b) that parallel processing has relatively high speed and is indep-

endent of file size.
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°2.2.3.4 General Purpose Computer Envirormert

It is assumed that the parallel processing takes place in a general

purpose computer (GPC) environment. That is, the OPC ru:ns the show

and makes maximum use of the parallel processirg to ease its internal

serial processing load. W.ith this, comes the corcept of filtering,

wherein the search may be too complex for the parallel processing

hardware, bu.at the number of candidates for serial processing is grossly

reduced. For example, in a sea surveillance s-,stea, a search for all

ships within one hour travel time of point p involves a great circle

distance (OCD) determination and a division by ship speed. At disc

rates this is too much of a calculation to expect to do simul aneously

on all ship location records, so the GPZ would set up a search on

latitude and longitude limits, doing the final elimination in core memory.

Other functions left to the OPC include input conversion, generation of

search criteria, file purging and ivdating, generating historical tapes,

fallback procedares and output conversion. The requirewents on the OPC,

then, include a strong mwltiprogrammirg capability if all these furctions

are to be done in real tin.

3S1
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2.2.I Evaluation of AFP-l

I¶s section is a discussion of the AFP-1 file processor as descri.,ed

in the presvous Librascope "Stiody in Associative Processor Techniques"l,

While APP-i offers strong potential in document retrieval

applications such as the DDC (formerly ASTIA)Retrieval 'ystetm , it re-

quires modification to achieve the generality required of command and

control query systems. The AFP-i configuration constituted an inter-

madiate step in this stud and served as a vehicle for better under-

standing. A generalized version of this processor, termed AFP-2, is

described in Section 2.3.

An area of cost improvement, achieved in AFP-2, relates to the number

of heads per disc track. The AFP-1 system has three heads per disc

track. Current dis technology, with the high bit densities availa!)le,

makes m1lti-head tracks prohibitively expensive for bulk data storage.

In addition to the read head, the AFP-l has a head slightly downstream

to write data in a slot iust identified as eMPty .y reading an empty

ft.a•. i. has another head a farther dista'ice dovnstream to drop

coqpare flags in records after the records are searched. The APP-2

design eliuii~ates both of these hoads. Records are wrltLon with the

sam head with 'hich they are read.

Sice AFP-1 was Litended for search over a single homogeneous file,

it was stmrtund to allow search over all tracks in a single disc revalu-

tione. In the owe-rd and control environment,, there are usually many files,

.no more than one of ttich is searched a4 a tim. It is therefore unnecessary

to saarch all disc tracks simultaaoasly. In AFP-2, searches are lmaited to

som region of disc wiory where the size of a region is dete•wined )y

storage requirements tor a singlxe ile.
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There are two areas in which the definition of AFP-l was incomplete.

The first relates to the write head necessary to flag empty records.

The separation of this head from the read head dotermines a maximum

record length. Many small records could occupy this interval. How-

ever, no provision is made to queue the compare flags for these records.

A significant increase in AFP-1 complexity would be required to handle

these queues. It now seems impractical to store more than one record

in the maximum-length slot.

Search criteria in the MC problem are fixed-length document descriptors.

In the general command and control environment, search criteria are

normally fields of characters derived from an input query. Conceivably,

an APP could be built in which fields could be recognized, but every

possible parameter of every search field would have to be interrogated

each character time, thereby throwing an excessive processing load on the

associative memory.

In the APP-l, neither the read nor the retrieval processes were precisely

defined. Tn the APP-? system presented in Section 2.3, read and retrieval

processes are defined and the machine in structured to allow effective

execution of these proeseeW,

YT



2.3 ASSOCIATIVE FILE PROCESSOR

S2.3.1 Introduction

This section presents the design of an associative file processor, designated

the AFP-Z which accomplishes the parallel file processing tasks discussed

in section Z. 2. The design is an embodiment of the concept of parallel

processing for data retrieval by content using current state-of-the-art

hardware.

The AFP-2 description is presented in the context of a command and control

application and the design parameters are derived from an existing, success-

fully operating system* which is limited to serial content search. As such,

the AFP-2 design is responsive to all of the requirements of an information

storage and retrieval application, involving dynamiL:ally changing files in

the data base and a user oriented query system for data retrieval. The

design is broadly, rather than specifically, application oriented. Conse-

quently, no! unique structure ia defined; rather, options and tradeoffs are

pointed out and discussed.

This section contains a description of the major hardware elements and the

individual operations of the AFP-2. Following this, the content search and

data retrieval process is discuss-d. Finally, a number of tradeoffs and

options are noted.

The AFP-Z design description in this section demonstrates the feasibility

of building within the state-of-the-art a parallel file processor using

associative techniques. It shows that the inherent high processing rate

advantages can be attained by rmaking use of the parallel processing cap&-

bilithes of an associative memory while still retaining the relatively low

storage cost of a disc memory.

J'. I. I D in Concetof AFP -

The AFP.Z is designed to do a partllel search on data emanatiLig from a head-

per-track disc memory. A large subset of the tr,cky, Is reard in parallel and

th, bit streams arv comparctl ximultnco;sly with the searc:h criteria held

In sep;krate registers.

OtHoadquArters. United Stats' Air Force Command and Control System (471L).
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An associative memory is used to perform the parallel comparison and to

store the results as compare flags, assigned on a block-by-block basis. The

compare flags, after possible modification by subsequent parallel operations

in the associative memory, are used to control, and make efficient, a sub-

sequent data read operation.

The AFP-2 implements a number of data handling operations to allow its

performance as a data storage and retrieval system. These, including a

multiplicity of sehrch types, are described in section 2. 3. 4.

Certain design parameters are assumed for illustration, although these are

easily subject to modification for a given application. The assumed design

parameters are:

1) Blocks of 128 characters of eight bits each.

2) One "obsolete" and one "header block" flag per block.

3) 64 blocks (65, 536 bits) per disc track.

4) 1024 disc tracks (called a section) searched in parallel.

5) As a result of 3) and 4), an associative memory size
of 1024 words of 64 bits, plus a few tag bits, each.

6) A total disc memory capacity of several (say 5 or 6)
sections (that many groups of 1024 tracks).

Design parameters I and 2 are primarily application derived. The 128

character block is used in the operating command and control system

noted in section 2. 3.1.

Parameters 3 and 6 reflect currently available head-per-track disc technology.

Parameter 4 is largely arb'itrary, although there is a relation between the

block size and the number of tracks searched in parallel due to the structure

of the flag tracks.

Z. 3. 3 Summary of-,Hardware Elements

A summary of the major hardware elements of the AFP-2 follows (Figure 2-1).

Each element will be discussed in turn together with its pertinent features.

2..3.3.1 Disc Memory

The primary data storage element is a large head-per-track disc memory.

It is organized into a number of sections of 1024 tracks each. (The numbers

chosen are primarily illustrative. with some constrsints and tradeoffs die.

cussed later.) Each track is divided into 64 sectors, or blocks, of 1024 bits

3,
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each, which are intended to hold 128 data characters of 8 bits each. This

gives a total of 65, 536 bits per track, All 1024 tracks of a section are read

simultaneously, providing as many bit streams, and are searched simul-

taneously. Each head has write capability although it is not contemplated

to write in more than one track at a time.

Each disc memory section has two additional specialized tracks carrying

an "obsolete" (or "empty") flag and a "header block" flag for each block

in the section. These tracks also store 65, 536 bits each.

The disc memory has the usual accessory features of clock and timing

tracks, but for this discussion these will be ignored. Also, there may be

inter-block gaps, so the bit counts are to be considered usable bit counts.

2. 3. 3. 2 Associative Memory

The associative memory has the function of establishing and storing "compare"

flags for all of the blocks in a disc memory section. It has a word-per-disc

memory track (1024), and the word length is the numer of blocks per track

(64) plus a few tag bits (Figure 2-1). The exact number of tag bits is

determined by some tradeoffs discussed below, but is at least two. A multi-

write or write -on-match* capability is assumed.

Consideration will be given to other associative memory features and to

the situations in which they are particularly effective. These features

include the priority circuit or resolve operation* which selects the "next"

qualifying word, and the match type or approximate number of matches

operation. rhere is a difference in the latter two operations, although both

give detector plane statistics. The match type operation is a none-one-many

distinction, while the other gives an approximate count of the number of

matches.

The associative memory has a word register for either-way word transfers,

but no mask register as record data never enters the associative memory.

0 It has a bit selecting index register which is also associated with disc

block identification.

*Terminology used is taken from Reference 3
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2. 3. 3. 3 Search Criteria Registers

Three circulating registers, each one block long (1024 bits), are provided

to hold the search criteria. These registers operate bit serially in synchronism

with blocks on the disc memory, and are designated the key, mask, and control

registers. Essentially, their content, mixed with data coming from the disc,

including the obsolete flags, serves to fill the associative memory with com-

pare flags.

2. 3. 3. 4 General Purpose Computer
i

The AFP-2 is assumed to operate in a general purpose computer environment.

The AFP-2 is "operated" by the GPC. For efficient data transfer, a direct

memory access (DMt,) channel is assumed. Other properties of the GPC,

such as word length, interact with the AFP-2, but have only a secondary

effect on its functioning.

2. 3.4 Operations in the AFP

The macro operations performed by AFP-2 may be broadly categorized

by two characteristics; namely, the identification of record locations, and

what is done to those locations, or the access means and the function,

respectively. The functions will be discussed first.

2.3.4.1 Functions

There are five functions melated to operations on a data base stored on a

disc memory. These are:

1. Write

2. Read

3. Change obsolete status

4. Count

5. Search and set compare flags

2.3.4.1.4 Write - The write function may occur in order to change or add

a bit, character, field, or several fields in a record; to change or add a

record, portion of a file or even a whole file. Since it is not practical to

provide addressing means for individual bits or characters, the write

function is offered on a single block, or multi-contiguous block basis. The

management problems of trying to string together scattered block locations

for writing a multi-block record disfavor hardware implementation over

being handled by program in the GPC.
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For write functions, when less than a full record is changed, the record is

normally read into the GPC, changed, and totally rewritten.

2. 3.4.1. 2 Read - The read function may occur in order to transfer into

the GPC memory any of the types of data fields mentioned above from those

locations identified by the access means. It is assumed that the DMA ha's

a limit register that prevents spillover, when the read function tries to

present too much data in the case where the quantity is unknown.

An important facet of the read function is that usually it is preferred to

transfer only selected fields from the accessed records, to economize on

GPC memory. This feature is provided by the control register which is

loaded with field marks and transfer flags. (In the case of multi-block

records this feature cannot be applied to more than one block per record.)

The read function, as defined, refers only to transfers from the data base

on disc. Obviously there are many other data transfers from (and to)

the AFP-2; e.g., it may do a transfer of the associative memory content

to enable the GPC to do a programmed analysis of a search result.

2. 3. 4.1. 3 Change Obsolete Flags - The function of changing obsolete flags

usually, but not necessarily, accompanies other functions, and is executed

concurrently. The use of obsolete flags is perhaps best illustrated in the

updating of a dynamic file in response to a report. The report uniquely

identifies a file entry. This entry is searched, read (in entirety), and

obsoleted, by setting the obsolete flag. After being updated, the entry is

written in the "first obsolete location" in a defined region on disc, thus

reducing write access time. This operation is particularly effective where

a batch of reports can be treated together, and the updated entries written

in rapid sequence. With the write operation, the appropriate obsolete flags

are reset.

2. 3. 4.1. 4 Count - The count function is primarily used to provide statistics

on compare flags after a search. It may be mechanized, as noted in the

associative memory description (section 2.3.3.2), or it may exist implicitly

through program in the GPC after associative memory content transfer. In

situations where the count function is critical, there is also the possibility

of doing it simultaneously in each word in the associative memory, provided

the word length is expanded to include a count field. The technique of doing

parallel by word arithmetic is adequately covered in Reference 4 and will

not be repeated here.
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2. 3.4.1. 5 Search and Set Compare Flags - The search and set compare

flags function is the most important and complicated function of the AFP-2.

As such, it is least precisely definedlin that many variations are possible.

A fairly straightforward model is summarized here and variations are

discussed later.

This function may be defined as follows: Set or. leave compare flag3 (bits)

"on" in the associative memory in those locations corresponding to non-

obsolete blocks in the specified tracks which meet the search criteria con-

tained in the key, mask, and control registers.

A simple model of the mechanization is presented here to assist in under-

standing the function and hardware. It is assumed that the disc memory bit

duration (reciprocal of the bit rate) is long enough for many associative

memory cycles.

(a) Associative Memory Role

During the reading of each block from all tracks in parallel,

two things are occurring. First, the obsolete flags are being

read into an assigned tag bit of each word of the associative

memory. Second, key, mask and control information is

being used with disc data in one or more tag bits to er~tablish

block comparison. (See Appendix A for tag bit logic,)

At the end of each block, during the spacer bits time, the

results of the comparisons are "ANDED" with the obsolete

flags apd the result is stored in the bit of each word corres-

ponding to the block just read. This process may start on any

block so no access time is chargeable to it.

This process continues block after block for a disc revolution,

after which all blocks (in our assumed model, 65, 536) have

been completely searched and appropriate compare flags are

set.

The search is conjunctive on the specified criteria in the

key, mask, and control registers, i.e. , all criteria must

be met for a block to qualify. However, an effective dis-

juncton (logical "OR") of conjunctive searches can be

attained by doing the necessary number of conjunctive searches

and accumulating the compare flags.
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(b) Key, Mask and Control Register Role

The key, mask and control registers (Figure 2.1) carry

the criteria for a search and provide the following types

of comparison on a field-by-field basis (a field is a number of

contiguous 8-bit characters):

1. Equals

2. Greater than or equals

3. Less than or equals

4. Not equals

5. Bounded

For all but the bounded search, the key and mask registers

contain a key and a mask. The mask actually in on a bit-by-

bit basis, so individual bits can be used as flags in records.

For bounded search, the key and mask registers are used to

contain the upper and lower bounds, respectively. As no

bit masking is possible, the search applies to full 8-bit

characters.

The control register has associated with it an 8-bit static

register which is loaded each character time. This static

register controls what happens during the subsequent

character time. (Obviously, the control register content

must lead the key and mask register content.) Individual

bits have individual functions. One bit serves to mark off

fields. Another masks data transfers. Three select among

the search types.

2.3.4. 2 Access Means

There are three access means characteristic to the data base. These are:

1. Fixed address

2. Obsolete flag

3. Compare flag
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Z.3.4.2.1 Fixed Address - Fixed address access implies that the GPC

can specify ay block in any track in any section of the disc memory as

the starting location of a function. It also implies specification of the

duration of the function, e. g. , how many blocks are to be transferred.

The transfer can go from track to track uninterrupted.

2. 3. 4. 2. 2 Obsolete Flag - Obsolete flag access is used only for the

write function. It may be used.for multi-block records, by applying it

only to the first block of the record.

2. 3.4.2. 3 Compare Flag - Compare flag access is, of course, the

primary retrieval mode of the AFP-2. From the structure of the word

and bit counters of the associative memory, ali blocks with compare flags

set can be read through the transfer mask into the GPC in one efficient

operation.

Compare flag access is primarily associated with the read function,

although it is not unreasonable to associate it with other functions, such as
"change obsolete status".

(a) GPC Control - Variations of the read by compare flag

operation are possible as the result of differing levels of

hardware complexity. The simplest in concept is where the

compare flags in the associative memory are transferred into

the QPC, vhich then issues a series of fixed address read op-

erations to the disc memory. The fixed addresses are easily

calculated from compare flag positions, but some assistance

may be in order to help find set compare flags. In this

case, after an "or" operation over thM compare flags in the
associative memory into a tag bit, this tag bit, transferred

"v4th the compare flags, will materially assist the GPC. If

GPC time is available, the fixed address accesses to disc

memory can be queued in time to correspond to the sequence

on the disc. Thus, the transfer can be made time efficient,

with a disc random access only to the head of the 4ueue.



(b) AFP Control - A similar, even more efficient transfer

can be made under control of the AFP if the associative

memory has the priori'.v circuit option. The AFP starts

the transfer at the current position of the disc without

a random access time lost, but with only a wait for the

first qualifying block in any track.

This read function is mechanized as follows (see the

example in Figure 2-2):

The bit (of each associative memory word), corres-

ponding to the next disc sector to appear, is read into

the detector plane. Then the priority circuit is activated

and the first "one" is used to select the track to be

read. The bit (compare flag), corresponding to the

block being read is then reset to zero, and the process

is repeated. In the next sector a qualifying block may

be read from another track, which is all right, as track

selection, presurmably, is done at logic level.

With a sparse number of compare flags, by and large

the read function will complete in one disc revolution.

This assumes that no more than one track carries a

qualifying block in any given sector. When this is not

true, more than one revolution is taken in any possible

read sequence.

2. 3. 5 Search and Retrieval Considerations

The following sections discuss the search and retrieval process in detail,

going through it operation by operation. In some cases the logic mechani-

zation is detailed. Timing is also discussed. The following sequence of

*1 operations takes place:

2.3.5.1 Region Selection

The search normally must be confi.ed to a region on disc memory established

by software to contain the file of interest. For instance, if a region is used

to contain raw, unformatted data (perhaps linked to formatted files), a search

might produce accidental makes or matches which would have to be identified

and disposed of. The region selected is a set of contiguous tracks within a

section of the disc memory.
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2. 3. 5.1.1 Section Selection - It is assumed that there are several hardware-

established sections in the disc memory. For example, there may be five

sections, each containing 1024 tracks. Five-way electronic head selection

for each read amplifier would then constitute section selection.

Another possible method of section selection would use a head positioner

to physically move each head to one of several locations.

2. 3. 5.1. Z Track Selection - In the general case, a region is a subset of

a disc memory section. There are a number of ways in which the region can

be delimited. One way is to preload a dedicated tag bit in the associative

memory, and use this in a way similar to the obsolete flag usage; i.e., both

it and the obsolete flag are "anded" with the comparison tag bit to establish

compare flags.

Another way is indicated in Figure 2-1. Through the use of lower limit

(LL) and uper limit (UL) registers on the counter that distributes obsolete

flags, a region can be defined simply by regarding all records outside the

defined region as obsolete.

Both of the foregoing methods operate during the search. Another method

can be used which follows the search; namely, to set unwanted words in the

associative memory to zero, erasing the compare flags. Again the LL and

UL registers can control this.

Whichever method is used, region selection is the first logical step in the

search and retrieval process.

2. 3. 5.2 Load Key, Mask and Control Registers

As described in section 2.2.2.2, each file has a format directory which

describes the entry format, i.e.., the field locations ane, names, and

permissive values. The query preprocessing uses this directory to

establish the search criteria. These search criteria are then loaded into

the key, mask, and control registers.

The roles of these registers in the search process are described in section

2. 3. 4.1. 5 (b) and will not be repeated.

It is possible to load these registers in a number of ways. One is to

generate their exact content in GPC and do a simple transfer. This tends

to be cumbersome, anJ often minor changes to contents are desired between

searches. Another method is to provide specific operations which load

specified fields in any of the registers.
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2. 3. S. 3 Initiate Search

The search process is initiated after regionk selection and loading the search
criteria registers. If the search is a simple one, it is preceded by clearing

all the compare flags in the associative memory to "zero". Alternatively,

for a disjunctive search, the compare flags are not cleared, but accumulated.

The search begins as the first complete block begins to be read, regardless
of which one it is, and continues for one revolution until all blocks are read.

The search completion is preferably signalled to the GPC via an interrupt.

2. 3. 5. 4 Derive Search Result Statistics

Seavch result statistics may or may not be of interest to the GPC program.

If they are, any of the methods described in section 2.3.4.1. 4 may be used.

In particular, if detector plane statistics are available, a logical OR of the
compare flags is put into the detector plane. Under the assumption of

reasonably random (i.e., Poisson; compare flag distribution, this proces
is very accurate fo.- bmall numbers of compare flags (10-20% of the tracks

have matching records) and deteriorates mildly (63% valid) when there are

as many matching records as tracks.

2. 3. S. 5 Read Search Result

The process of reading the matching records into the GPC-ir-%les;ribed

in detail in section Z. 3. 4. 2. 3 under Compare Flag Access.

An optioviof the readoperatiott is-.-t*-4- obsolete flags as blocks are read,

section 2. 3.4.1. 3. This may be for the purpose of deleting blocks (and
possibly writing them onto a historical tape) or for updating with replace-

ment in the file by a write by obsolete flag access operation.

Atnother option of the read operation is to have each block ac~compi.oi ..by

its disc fixed address. This allows replacement in exact locations in, say.

a sequenced file. It, fact, the block transfer can be totally masked out

and only block addresses made to enter the GPC.

Formutting of the data transferred to the GPC is a function of its direct *umory

access (DMA) channel. Records should start in separate words. and it

may even be desirable to put fields in separate words; i.t. . each new

field starts in a new word.



2. 3. 6 Multiblock Record Considerations

In instances where the data base contaiiis files %%ith one block records,

files with two block records, etc. , and perhaps some "raw" unformatted

data, it is convenient t.) segregate the files by their record length. That

is, one disc memory region will have only one block records but perhaps

several files intermixed,and another only two block records. Normally,

these regions will not overlap from one section of the disc to another (but

they may; see section 2. 3.8. 2), and hence can be searched in one disc

revolution.

Multiblock records are considered to have a header block and one or more

trailer blocks. A given file always has a fixed record length, however.

Blocks are tagged internally with not only their file identificatiorn, but their

sequence number within the record. By including these tags as search

criteria, any fields in the record can be searched on.

When the search fields for a given search are all within one block, a simple

search suffices to establih compare flags, When the searc.h fields come

from different blocks, each block is treated in a separate search, establishing
compare flags each time. The associative memory is then used to establish

which records have compare flags in all required blocks. Those which do are

left with their comoart! flags, adjusted, if required for the read process.

Multiblock records will have their header blocks in given sectors, i.e.. two-

block records always start in an even numbered sector. This allows a read

process which is efficient as described in section 2. 3. 4. 2. 3. With only one

control register, a field masked transfer is impractical, as each block of

the record would have the same mask applied. It is-practical, however, to

mask block by block, as noted above, through operations on compare flags in

the associative memory.

Multibloak write operations are straightforward using fixed addresses bro•,Sht

* along in read operations. However. the multiblock write-first -obsolete.

location operation requires additional hardware to identify header block

locations. An extra disc tr.ack, called the header block flag track. is needed.

This track is not a circulator like the obsolete flag track, but needs only a

single head. It is written 4y the GPC when disc regions are assigned. With

this refinement, many multiblock records can be written in a single write

operation. The heaC',r block flag not only identifies the beginning of an
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empty slot, in conjunction with the obsolete flag, but also the beginningý

of the next slot and hence the end of the empty slot.

Writing cannot be masked, even block by block; hence, full records must

be assembled, in general, for write operations.

The comme:nts on detector plane statistics relative to a count function

remain valid.

2. 3. 7 File Maintenance Considerations

File maintenance involves adding, deleting, and changing recoids in the

data base, in contraet with querying, which is concerned primarily with

selective data retrieval. Changing records involves retrieving them and

replacing them on disc memory. Not much can be done about the access

time to retrieve a record, assuming it is done by a content search. As

search and read are separate operations, the total retrieval time is a

random access time plus a disc revolution, averaging 1 1/2 revolutions.

The revolution corresponds to the search, and the random access to the

read. Writing, however, is a rapid process, assuming the write in first

obsolete location is used.

Note that this process does not compare unfavorably in access time with the/
technique of keeping a disc map in core memoryrandom accessing a record

by fixe¢d address, and then waiting a disc revolution to replace the record.

Content retrlevr.l, of course, obviates tbe need for a disc map in core

memory.

Batching updates, assuming independent records are involved, becomes

somewhat more efficient, as a single read operation, taking most of a disc

revolution on the average, and a very fast writ first obsolete location are

chargeable to the whole batch of updates. However, a separate search

operation 15 required for each record, This suggests a new search-and-set

compare flag function, namely. "search until a compare flag is found"

which cuts average search time in half. The associative memory detector

plane "match type" option is needed for this.

Using the write in first obsolete operation on a dynamic file. which is up-

dated frequently, will have the effect of crowding entries in the lowest

-umbered tracks of the region containing it (because obsolete flags appear

track number sequence). This reduces the validity of the count function
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using the detector plane statistic option in the associative memory. However,

it favors the scheme of counting in the GPC after associative memory transfer.

2. 3. 8 Tradeoffs and Options

This section is primarily a resume and discussion of tradeoffs and options

previously mentioned with some additional ones. introduced.

2. 3.8.1 Block Length

As discussed in section 2. 2. 3. 1, the block length is a somewhat arbitrary

parameter which ca,• be estimated to suit the application. Short blocks

favor disc storage efficiency where formatted files are stored, but both

require a larger associative memory for the larger number of compare

flags per track, and increase the management cost of storing unformatted

data. Also, short blocks increase the number of obsolete flag tracks and

header block flag tracks.

Because of the way obsolete flags are loaded during the search, it is con-

venient to have an integral relationship between the number of tracks searched

simultaneously and the number cf bits per block. Of course, in static data

base applications, where obsolete flags are of no utility, this constraint

disappears.

2. 3. 8. 2 Associative Memory

In section 2. 3. 3. 2, the associative memory options of the priority circuit. or

resolve operation and detector plane statistics are mentioned. The resolve

operation is particularly useful, as it enabled the very fast read by compare

flag operation, described in section 2. 3.4. 2. 3 (b).

If structured in a particular way. the resolve operation can be used to obtain

detector plane statistics through an iterative process. Successive resolve

operations are performed and the selected detector plane bit is set to nero,

4 A count of these operations is the required statistic.

Other means of generating detector plane statics have a usefulness highly

dependent on the application.

The size of the associative memory compare fnag region directly determines

the number of blocks that can be searched in one disc rem(olution. Both

associative memory cost and the fact that in most applications there e

many files, only one of which is searched at a time. dictate the search of

only a subset of the disc tracks at a time.
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The tag bits required vary with the application. A total of four are needed

in the presently assumed structure. One is devoted to the obsolete flags

and is loaded one bit at a time as the flags are read. Three are needed

to handle all of the types of searches assumed. The equals, greater than

or equals, less than or equals, and not equals searches require two tag

bits, one active during each searched field and the other to remember the

result from field to field. However, the bounded search requires the three

dedicated tag bits. The search operation, exclusive of the field demarcation

is described in the RADC report and so is summarized in Appendix A.

The search, insofar described, is a conjunctive one, in that all qualifications

in the search criteria must be met. Disjunctive searches, then, become

merely sequences of separate conjunctive searches. It is useful to consider

the complementary structure for some applications. One such application

exists in context of the DDC (formerly ASTIA) retrieval problem, discussed

in Appendix B.

Another relationship of the associative memory and the disc memory is

worth consideration; namely, where thex, is one large homogeneous file

occupying most of the disc, and.this file seldom, if ever, changes.

Obsolete flags are not necessary, as it is assumed that file maintenance

consists almost exclusively of adding new items. Also, it may be desirable

to search many or all di3c memory sections, establishing compare flags,

in a single (multi-revolution) operation, (When combined with the disjunctive-

then-conjunctive search, this becomes the DDC retrieval problem.)

As the associative memory cannot hold compare flags for more than one

section, it is necessary to use disc memory for compare nlag storage. As

a consequence, only one bit of comrare flag storage is needed in tht

associative memory (per word). These bits are written serially, as the

search proceeds. into a track structured the same as the obsolete flag track

described previously. Note that compare flag statistics are easy to obtain

by a simple serial counter,



2. 3. 9 Conclusions

This F..ction has discussed in detail the design of an associative file processor,

which can perform the parallel file processing described in section 2. 2. It

not only achieves the high search speed ascribed to parallel processing, but

is efficient in the broad spectrum of operations required of a dynamic data

base storage and retrieval device.

The AFP-2 design is described in a somewhat generalized manner, pointing

out a number of the speed/hardware tradeoffs and function options, because

it is recognized that any actual design will be highly application oriented.

In spite of the hardware variations, the nucleus of the design goal is retained,

namely, the ability to do a rapid, highly parallel content search of files in

a data base.
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2.4 A QUERY LAMGUAME FOR USE WITH APP

This section presents a query language suitable for use with the AFF

when operating in an information retrieval envirtniment. The language

is thtt develoved for the 473L Command and Control System.1 Identifi-

cation of a suitable AFP query language accomplishes the following

objectives:

1) The languagc aids in delineating expected areas of application

for the machine.

2) AFP hardware was utilized for translation from the query

language to machine language.

The 473L query language was chosen as the AFP language because it is

operational, well documented, and its intended usage area closely parallels

that of the AMP. Librascope, having developed the 473L hardware, is

familiar with the language. The original QL was implemented on an IBM

1401 system, about four years ago, during the "Operational Training

Capab'lity" (OTC) phase. In June 1964, the OTC system was upgraded to

an I3SI 1410 system. The second generation of 473L was implemented in

the third quarter of 1964, with the installation of a Librascope L-3055

Data Processing System. This was the second phase of incremental groh.

It represented the "Initta. Operational Capability" (OC) st*ge. Develop-

ment of this system is row in the third phase, the "Complete Operatioral

Capability" (COC), which was initiated in aid-196S.

During each of these operational phases, 473L-QL end its users were under

conStant evaluation. The languare wva thereby refined end improved at

each stoge of development. The fact that 4?3L-QL is operationally proven

was an important reason for its choice as a mocel for the present study.



The QL is composed of two mqJor sections, vocabulary and grauar. The

vocabulary consists of two parts, fixed and dynamic. Content of the fixed

part Is a set of items which describe and control the search end retrieval

proceases. There are three types of items: words, symbols and punctuation.

The dynamic part of the vocabulRry contains words which describe the data

base information to be processed. The principal word type is "attribute

name". This part of the language is dynamic in nature since its content is

variable. This occurs when the daca base content is altered, resulting from

files, attribute narnes and values being added, deleted or modified.

Data files to be used with the AFP are in fixed record format. Why this

structure has been chosen is explained in Section 2.2, with regard to

parallel processing. As a consequence of this fixed format, a constraint

is placed upon the file storage of attribute values associated with each

attribute name. When it is possible for a variable number of values to

be present under vne attribute name, the format must be struztured so as

to contain the raximum number of values to be allowed. For some attribute

names, this !*ructure will contain some empty, or blank, value-spaces.

This cannot be avoided under the fixed-record format.

The QL grmmar is implemented by syntax and punctuation. The syntax, ii.,

proper arreang t of words into a weaningful query, is set into a format

composed of item drawn from the fixed part of the vocabularly, as described

previously in this subsection.

With regard* to using the QL to form queries, punctuation marks appear as

they would in a normal iStlieh sentence. The statemnt fbumat approxi.ate#

that which is used in inglish gromsr. Use of special •ymbols has bmn

elsnet eliminated. Tbeeo factors have resulted in a close approximatizn to

the ideal oama-echine relationship.
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The seven basic statement elements of 173L AL are now de3cribed. In

order of their ust, these elements are:

Program Indicator (1)

File indicator (2)

Qualifier Conjunction (3),

Qualifier (4)

Output Conjunction (5)

Output Director (6)

Output Selector (7)

In certain QL statements (queries) some of these elements are omitted. In

others, elements appear more than once.

1) Program Indicator

This is the initial word of the QL statement. It directs the control

program to use the QL program. It also provides a logical English

language beginning for the statement.

Example: Retrieve

2) File Indicator

This identifies the file from which data are to be retrieved. It

always follows the prop-'m indicator.

Example: Aircraft (File name)

3) Qualifier Conjunction

The specific word "with" follows the file indicator. It serves as

the conjunction between the file indicator and the qualifier. Also,

it mskes a more readable statement and eliminates the need for

punctuation to identify the following qualifier.

The QC: with

4) Qualifier

"this Ls the element of the statement which describes the specific

nature of the data to be retrieved. A qualifier consists of a set



of one or more modifiers, each of which is norvmaiy composed of an

attribute, a comparator, and a value. An attribute is a characteristic

of the file; a value is one of the states an attribute my assume;.

and a comparator defines the logical or mathematical relationship

between Che attribute and the value. RUNWAY LENGTH is an attribute

of the sanmple aircraft file, and 5000 feet could be a. value for

KUVIAY LENGTH. The expression "RUNWAY LENGTH>'5000" is therefore a

valid modifier. Another modifier could be "COMMAND - TAC". Placing

these two together as "COMMAND - TAC, RUNWAY LEN0T1I'5000" forms a

modifier set that describes certain entries in the file more specifically.

The modifiers in a set are separated by commas and are logically

additive; that is, an entry must meet the requirements of all the

mowifiers in a set to qualify. A simple qualifier contains only one

modifier set. A compound qualifier may be constructed by combining

several alternative modifier sets. This could be "COMMAND - SK, AND

ACFT POS'lO; OR COMMAND - TAC, AND RUNWAY LENZGTHi500O." The semicolon

(;) defines the end of one modifier set and the beginning of the next.

It also specifies a logical OR relationship between the sets. Data

may qualify by meeting either of the modifier set's criteria, in

this case. If the (above) semicolon is replaced by a coma, file

data qualifies only if it meets the criteria ia both modifier sets.

5) Output Conjvaction

The specific word "then" always follows the qualifier end *eparates

it from the outpJt director. The conjunction also makes the statement

more readable.

The OC: then
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6) output Director

This specifies Lhe output devic,. and the format in wbich the retrieved

data are to be presented.

Exi~mple: Print, H (horizontal)

7) Output Selector

The last part of the QL st3tement is the output selector. It cotitains

the attribute names which are to be output with their associated

values. Also specified, if necessary, if the detail arrangement of

this output, within the format given in the ouiput director.

Exauple: Command, Afld Nase, Acft. Pos, Runway Length

Query statements are terminated by the "end of message" sym~boll-I

Beyond the normal use of the seven statem~ent elements Just described,

there are optional features available to the user. They are used in

conjunction with the Qualifier (4), Output Director (6) and %ltput

Selector (7). These options arc. described as follows:

a) SAVE (with Output Selector)

This specifies that the input query atatemot is to be

saved, io., stored in the SAVE table, for atetr use.

b) REMARKS (with Output Selector)

Any commots (free text) which the user wents to have

included with his statement are appetWed at this point.

This type of informotion is stored in the second section

of the file* as previously described.

e) -=L (with Qualifier and/or Output Selector)

This option% allows input *anor retrieved date to be

titled. for its identifi-tetion. an asterisk must be
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placed at each end of the title, e.g.,

'.ITJE (Content)*

d) SORT (with Output Selector)

If the output information is to be presented as sorted

data, the mnemonics, INCR and/or DECR are used. If the

data is to be forward sorted, Ix., A to Z and zero to nine,

INCR, i.e., increase, is used. For the oppositely order.d

sort, DECR, ie., decrease, is inserted.

Sorting can be performed on a number of different attributes

in one statement. Thie attribute listed first represents

the values to be used in the primary sort. Succeeding

attributes, in t~e order listed, represent subsequent

levels of sort.

e) UPDATE (vith Output Director)

If it is required to update data files with now information,

the word, UPDATE, ii applied to the attributes and values

to be used.

f) M•tAIN (with Output Director)

This director is similar to the previous one, UPDATE. It

specifies the output attribute values tsich are to be

saveWd in. tbular form for later use.
0

All QL statement informatiou, represntig both basic element &;d optional

items is set into a specified formst. In addition to the besic elownts

and optlons discussed previsouly, the QL contains a few specific functions.

Their use is indicated by Lneertioa of function $m00Mics into the qualifier

or output selector s*ction withi" the QL stattment forw.st. These functions
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provide a user with the ability to qualify or to generate and select

certain data, using as control criteria, information which is not explicitly

stored in the data base files. The functions which currently are available

are defined as follows:

Great Circle Distance (GCD) - computes the GCD between two

geographic points on the earth's surface.

Sum (SUM) - accumulates the sum of values of a particular

attribute.

New File (COMBINE) - extracts information from several data

files and generates a new file to be used, as desired, in.

subsequent query statements.

By way of illustration, one of these functions, SUM, is now described.

The SUM function can be performed on any numeric attribute values within

the query statement. It is used in either the Qualifier (4) or Output

Selector (7) part of a query statement.

The general form, in the Qualifier part of a statement, is expressed by

using the term, SUM, followed by: the attributes which control execution

of the function, attributes to be sunmmed, and their respective comparators

and values.

A typical example is: SUM BY COMMAND (ACFT RDYI4).

If a sum, as described above, is desired as output infoxaation, the Output

Selector' part of a statement is used. Only the term, SUM, is required for

this action.

If attributes which are to be summed for output do not appear in tho Qualifier

part of a statement, a particular Output Selector format must be used. This
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form consists of only control attributes and the attributes to be summed,

A typical example is: SUM BY COMMAND (ACFT PDY, ACFT POS).

One additional feature of the QL, not previously discussed, provides for

the generation of complex queries. A complex query is composed of more

than one subordinate query. Two successive subordinate queries are

separated by a colon (:); they can address the same or different data files.

In operation, data retrieved in response to a particular subordinate query

are used in succeeding subordinate queries as attribute values. In this

way, the user is provided with a means by which he can use data, from

certain files, to identify and select data from other files,

A complex query examp-e is given:

In English text, ns a user would present it, the example statement is,

"Retrieve each SAC airfield name and the number of crews

formed, for those bases having at least as many crews formed

as there are "COMBAT READY" aircraft at the Offutt SAC base."

Using the foregoing plain test, the query in 473L language is as follows:

RETRIEVE (ACFT WITH) COMMAND - SAC, AFLD NAME - OFUTT THEN

RETAIN ACFT RDY: RETRIEVE PERS WITH COMMAND - SAC, CREWS

FMD 1.(ACFT RDY, CREWS FKD, OR) THEN PRINT, H* OFFUTT, ACFT

RDY * ACT RDY * AFLD NAME., CREWS FlH * AFLD NAME, CREWS

Explanatory notes, on this query, are presented below:

ACFT, the Aircraft Data File

Th* colon (:) separates the two SQ's of this complex query j
"PUS, the Pers•nnel Data File

(ACFT RDY, CREWS FWD, OK), denotes comparison of each
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"CREWS FMID" value with "ACFT RDY." The "OR" specifies that

each successful comparison (is., on.) is a valid result;

meeting the user's requirement.
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3.0 ASSOCIATIVE SOLUTION OF NETWORK FLOW PROBLEMS

3.1 INTRODUCTION

Inthis section, an associative parallel processor (APP) is structured and

programmed for solution of network flow problems, typified by resource

allocation problems/and commodity transportation problems, widely discussed
in o era ions res arch " . 1-12

in operations research literature . The structure and command set for

the APP are very similar to those previously developed by Librascope

under RADC contract AF 30-(602)-3371 for picture processing applications 15,16

The studies reported in this and in the following chapter are intended to extend

the range of identified applications for which the associative parallel processor

can be efficiently employedwhen compared to serial processorsand to explore

variations in machine organization and command set occasioned by changed

problem environments.

Each network flow problem, herein considered, is a variant of the general

Hitchcock-Koopmans Transportation problem 1 and is solved by a variant

of the "Hungarian Assignment Method" due to Kuhn . In the remainder

of this section, we describe the network flow problems to be solved, and

show how weapon assignment tasks can be couched within these models. We

describe the structure and command set for the APP used to solve these

problems, noting organizational variations from that APP developed for

picture processing. We then program the APP for solution of three distinct

forms of the transportation problem and compare associative solution times

to times for solution of these problems on conventional serial machines. It

is shown that associative parallel solution of each transportation problem

investigated is one-to-three orders of magnitude faster than conventional

processing, dependent on network sizt. An important consequence of this

result is the ability of associative parallel processors to solve complex weapon

assignment tasks in real time. A summary, and conclusions reachedlare included

in subsectionk 3. 4.
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The jeneral Hitchcock-Koopmans transportation problem was first formulated

by F. L. Hitchcock in 19411, and independently, durinS World War II,by T. C.

2Koopmans . Both men suggested a procedure for solving this problem

similar to the linear programming simplex method3 . In 1951, Dantzig4

developed a simplified form of the simplex method for solving this problem.

This method was popularly employed until 1955, when H. Kuhn 5 ' 6 proposed

a method based on a combinatorial procedure. Kuhn termed this method

"The Hungarian Assignment Method" after the Hungarian mathematician

7Egervary , who provided the essential feature of the proof for a theorem

of konig8 concerning linear graphs. Kuhn used this proof as the basis

for his algorithm which provided a simpler method than Danzig's simplified

simplex method for solving the assignment problem. Later in that same year,

Ford and Falkerson9 discovered an algorithm similar to Kuhn's which could

be used to solve the more general transportation problem. A concise

statement of Kuhn's, andFord's andFalkerson's algorithms can be found in

10an article by Munkres

There are two variations on the Hitchcock-Koopmans transportation problem

which have been termed:

1) The assignment problem

0 2) The transportation problem

As will become evident, the assignment problem is only a special case of

the more general transportation problem. In each case, there is a rating

matrix (a.j), as illustrated in Figure 3-1, where the rows of the matrix

correspond to initial surpluses of materials, eg., missiles, and the columns

correspond to initial shortages, eg.,, targets. The elemerts, aij, of the rating

* matrix represent costs or values associated with sending each of the surpluses

to each of the shortages. In Hitchcock's original problem, the row designators

represented warehouses with inventory surpluses and the column designators

represented stores with inventory requirements. The given rating matrix

represented costs associated with shipping the surpluses from each of the
66
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stores. The problem was to find the assignment of the inventory from each

of the warehouses to each of the stores, as represented by an assignment

matrix (xi), such that the total shipping cost was minimized, i. e.,

m n
Minimum aj Xl

i-- =l

In the case of a weapons assignment problem, the rating matrix can be

thought of as a value matrix, where:

i= Wj Di Pi

and

W. = Worth or value assigned for each target it?

Dij = Destruction capability for each target "j" by each missile "i"

PiU = Probability of each missile "i" reaching each target I"jII

a.. = Expected worth of each missile "i" for each target "j"

Here the problem is to determine the assignment matrix (x ij), so that the

total expected value is maximized, ie.,

Maximum [~ n a.. x..1

For the so-called "Assignmint problem", each of the row designators contains

one and only 2ne unit of surplus and each of the column designators has a

shortage of one and only one unit. Accordingly, the rating and assignment

matrices are of dimension n X n where

xij

In the so-called "Transportation Problem", eachot the row designators hasQ2L-

more surplus units and each column designator has a shortage of one or

more units where the total surplus units is equal in number to the total

shortage units. Here the rating and assignment matrices are of dimension

m Xn.! .I 6C



Three variations on the network flow problem were considered, namely:

1) Binary assignment problem

2) General assignment problem

3) Transportation problem

The second and third variations above, were previously explained. *The

binary assignment problem is a simplified version of the general assignment

problem where the rating matrix is binary, i.e., consists of only zero's and

one's. In other words, each missile either can or cannot be assigned to a

target. This problem is simply one of finding any feasible solution .for the

assignment matrix xi, since all feasible solutions are equally optimum.

This problem was selected for consideration because its solution using two

serial processors, the L-3055 and the AN/FSQ 31(V), was available in a

SLibrascope report including timing data. The timing data allows a convenient

comparison between the APP and a serial processor.

3.2 THE ASSOCIATIVE PARALLEL PROCESSOR

3. 2. I The Structure of the Processor

Figure 3-2 is a block diagram of the APP, structured to solve the weapons

assignment problem. This APP is similar to the one structured for pattern

15recognition described in a prior RADC report . Elements of the APP in

Figure 3-2 identical to the previous APP are:

1) Random Access Control Memory - a small memory used to store the

instructions.

92) Central Control - used to interpret the instructions in the random access

control memory and execute control.

3) Associative Array - some of the fields in the array are used to store

data while other fields are used for tagging purposes.

4) Data Drivers and Control - used to exchange data from the data register

into the data fields of the as 1ciative array and vice versa and to issue

pulses to interrogate the dat' i,.Ids of the associative array under a

specified search criterion. Particular fields of the data fields in the
69
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associative array are selected under the control of the "A" and "B"

counters.

5) Tag Drivers and Control - used to execute pulses to interrogate the tag

fields of the associative array under a search criteria specified in the

instructions.

6) Data Register (DR) - used to store data for reading into or out of the

data fields of the associative array or the random access control

memory, All input and output data are processed through the data

register. It is also used to store a key for searching the data fields

in the associative array.

7) Detector Plane (DP) - used to indicate a match in the associative array

and to multi-write into the associative array for matched words.

8) Match Indicator DP = -; used to indicate when all detector plane elements

are zero (no matches) after an associative search.

9) "A" Counter - used to specify and limit particular data fields for a

search operation.

10) "A'FL Register - used to store the final count limit for the "A" counter.

11) 'B" Counter - used to specify and limit particular data fields for a

search operation.

12) "B" Register - used to store the final count limit for the "B" counter.FL

New processor elements useful in solution of network flow problems are:

13) "AlL" Register - used to store the initial limit. After the final limit is

reached on the "A" counter the next increment or decrement count

indication will automatically reset the "A" counter to the initial limit.

14) "BIj' Register - same as "AIL" except for "B" counter

15) "D" Counter - used to store a value which can be transferred to the data

register into fields as specified by a limit count of either the "A" counter

or "B" counter. It is incremented under program control and initially

starts with a count of one.
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16) "DL" Register - used to store the limit value for the "D" counter. When

the limit value is reached, the "D" c~ounter is automatically reset to one.

17) Match Indicator DP.I - used to indicate when one and only one detector

plane element remains in a one state after a search (a single match),

18) Multiple Match Resolver - when two or more detector plane elements

remain in the one state after a search this network selects one matched

element from the two or more.

The purpose of each of the elements in the structure will become more obvious

after reviewing a description of the command set in the next subsection.

3. 2. 2 The Command Set

The command or instruction set can be partitioned into six different type.-s,

namely:

1) Associative Command

Z) Counter Loading Commands

a) Digit driver control counters

i) Set AFL x FL' AIL =xIL

ii) Set BFL YFL' AIL = YIL

b) Data Counter

i) Set D L =Z L

3) Branching Commands

a) Jump (unconditional) to

b) IF "A" counter a initial limit, jump to

c) IF "A" counter # initial limit, jump to

d) IF "B" counter z initial limit, jump to

e) IF "B" counter 0 initial limit, jump to

f) IF "D" counter a 1. jump to

g) IF "D" counter 0 1. jump to
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h) IF DP (detector plane) 0, jump to

i) IF DP 0 0, jump to

j) IF DP = 1, jump to

k) IF DP $1, jump to

4) Data Transfer Commends

a) Transfer matched word into data register

b) Transfer data registers into selected word

c) Transfer data register into RAM word

d) Transfer RAM word :nto D."*.

e) Transfer "D" counter into data register ur.der A counter control

f) Transfer "D" counter into data register under "B" counter control

5) Multiple Match Command

a) Ciear and select first match

b) Select next match

6) I/0 Commands

a) Read input d:,ta into data register

b) Read data register into output data

c) Stop

d) Begin

The asseciative command is the most complex of the group and is further

described in Figure 3.3. The first bit in ihe ihstruction indicates whether

the command is associative or not. The second bit indicates whether or not

the detector plane is set to one before the asaociativo operation is executed.

The third through eighth bits concern search and multiwriting operations on

j the data fields undex control of the "A" cout~ter, The third bit indicates

whether or not ther-e is a sea•rch. the fourth WWd fifth bit* spec~ifJ- the starch

criterion to be a *or*, ;mt. the contents of the data register, or the consplement

of the data register contents.
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The sixth bit indicates whether or not multiwrite is performed. If multiwrite

is specified, then the logical complement of the search critLrion is rewritten.

The seventh and eighth bits indicate the increment or decrement state of the

"A" counter, where "N" means no increment, "I" means increment (single),

"ID" means decrement (single) and L means increment through limit.

The ninth through fourteenth bit apply to the "B" counter and have the same

specifications as the third through eight bits do for the 'A" counter.

The remainder of the associative instruction word, except the final bit, is

partitioned into fields of three bits, each of vhich specifies search and inultivrite

operations on the tag fields of the associative array. The first field bit,

e. g., bit 15, indicates whether the related tag bit is searched or not; the next

bit, e. g. , bit 16, indicates whether or not the search is on a zero or one;

the final bit, e. g., bit 17, indicates whether or not the multiwrite operation

is performed. Again, if multiwrite is specified the logical complement of the

search criterion is rewritten.

The final bit concerns the increment state of the I'D" counter where'N"

represents no increment and "I" represents increment.

3. 2. 3 Timing Assumption on Command Set

The timing assumptions are based on a woven plated-wire associative memory

described in Appendix C. This woven plated-wire associative memory has

a digit search time of 50 nanoseconds and a multiwrite time for all like zero's

or one's of 100 nanoseconds. Accordingly, as will be shown later, since no

more than four tag bits are required for any one associative search in any of

these three problems, it is assumed that the basic associative command can

be performed in 500 nanoseconds with the exception of a limit search. In the

case of a limit search, it is assumed that an additional time of SO nanoseconds

per digit through the limit will be required for the associative command cycle.
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It is assumed, for compatibility reasons, that the random access control

memory has an access time of 250 nanoseconds, and the instruction decoder
has single instruction look-ahead and can execute a non-associative command,

with three exceptions, in 250 nanoseconds. The three exceptions are:

1) Clear and select 1st match

2) Transfer matched word into DR

3) Transfer DR into selected word

In each of these three cases, it is assumed that 500 nanoseconds will be

required to execute the command. The 500 nanosecond assumption can be

justified in these three cases by referring to the description of the plated

wire memory in Appendix C.
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3. 3 ALGORITHMS FOP, SOLUTION OF NETWORK FLOW PROBLEM

Subsection 3. 3 is organized into four lower ordered subsections. Subsections

S3. 3. Z, 3.3.3 and 3.3.4 contain a description of the detail algorithm s for

the binary assignment problem, general assignment problem and transportation

problem, respectively. However, before launching into a description of these

detailed algorithms, it was felt that a simple example to demonstrate the

types of operations required of the APP by the algorithms would be helpful.

Accordingly, in subsection 3. 3. 1 an example, taken from the general

assignment problem type, is presented. It is hoped that this example will

serve to clarify the detailed algorithms presented in subsections 3. 3. 2,

3. 3. 3 and 3. 3. 4.

3.3.1 Example to Demonstrate Processing Operations

Before proceeding to the detailed algorithms presented in subsections 3. 3. 2,

3. 3. 3 and 3. 3. 4, it is worthwhile to present a numerical example to demon-

strate the types of processing operations required and to show the utility

of the APP in performing these operations. The particular example is

selected from the general assignment problem type. The rating matrix

for the example is presented in Figure 3.4, A). The object function will be

maximized.

The Hungarian Assignment Method is based on the fact that a rating matrix

(Figure 3. 1) may be transformed by subtracting a constant from any row or

column, without altering the optimum assignment matrix for the rating matrix.

.Through a series of such transformationsa rating matrix is altered to have

a number of "independent" zeros equal to the order of the matrix. A set of

zeros is independent if no two zeros lie in 'he same row or in the same column.

The optimum assignment matrix is a binary matrix of the same order as the

given rating matrix. It has oneSat elements corresponding to independent zeros

of the transformed rating matrix and zeros elsewhere. j
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RATING - MATRIX
A) Pick maximum in rows 1-6 6 3 0 0

0 8 0 14 12

0 2 7 7

S 0 3 4 0

5 2 2 / 0

B) Obt ain at least one zero in 4 0 7 10 10
each column 7-13 0 7 15 1 3

8 6 0 1 /
0 7 4 3 7

2 5 5 0 7

C) Initial independent zero assign- * 0 9

ment 14-22 5 2

I* 0

6

* 6

D) Step No. 1 - Cost Matrix r 0 9

Test 23-26 *15 2

0* Of

6
*6

E) 27, 28 and 23, 24 * 7 0 9

0* 15 - ]

4 6

5 *6

F) Step 3- Cost Matrix Adjustment * 5 0 739-41 * 13 0

2 4

3 *4

Figure 3-4 Processing Operations in Solving General Assignment
Problem
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RATING - MATRIX

G) Step 1- Cost Mat':ix Test , 5 0 7
23-26 1

13 1

2 4
3 *4

H) 27, 28 4 ,* 5 10 7
i•: n.13 n,

49 0 4i0 2 4

2 3 *4

I) Step 1 -Cost Matrix Test 4 7'5 07
23-26 1,,) 4,

4L
10 W . • •

2 3  * 4

J) Step 2 = Assignment Adjustment 4 )* 5 0 7
29-31 ,

40 - 0- - '

O' 2 4

2 3 *4

I~32-34 4 )*5 107

0* 2 3 4

2 3 * 4

L) 35-36 * 1

Figure 3-4 (continued)
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The terminology used in describing the algorithm is due to Munkres10 and is

presented below:

1) Covered row or column in matrix - A row or column containing a starred

zero in a transformed rating matrix.

2) Starred zero - Designated by a star (*) and used to indicate a trial assign-

ment of an independent zero.

3) Primed zero in matrix - Designated by a prime (') and used to indicate

a ncn-covered zero which becomes a candidate for starring during the

course of the algorithm.

Addition designators used to point out particular elements in the matrix in the

example of Figure 3-4 ar,.:

4) An element with a single line through it - Used to designate the maximum

value in a row or column.

5) An element with a square around it - Used to point out a particular element,

as defined in the text, for the convenience of the reader.

The algorithm is illustrated in Figure 3-5. Parts A through L of Figure 3-4

represent the transformations on the rating matrix according to the algorithm

of Figure 3-5 in solving this problem. Each alteration is discussed in turn.

A) The element(s) with maximum value in each row is (are) determined

and the rating matrix value is subtracted from this value for each element.

These operations correspond to instructions I through 6 in Figure 3-5.

The result is shown in Figure 3-4B. These operations transform the

maximizing problem into a minimizing problem. The APP can globally

select the maximum element within a row in a single operation and can

also globally perform the subtraction in a single operation. A serial

processor would have to test each element in a row to determine the

maximum as well as perform the subtraction for each element.
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Initial Zero Adjustement for Maximizing

I Set rýw initial and limit index

2 Look at row indexed

3 Pick maximum in row indexed

4 Replace each row element by the difference between
the row maximum and itself

5 Row limit index reached?

6 Increment row index

7 Set column initial and limit index

- Look ut column indexed es

9 Any zero's

10 Pick minimum in column indexed

11 Subtract minimum from elements in column

C 12 Column limit index reached?

13 Increment column index

Initial Independent Zero Ass.ignrent

14 Set row initial and limit index

15 Look at row indexed

16 Any non-covered zero's in row no

17 Single zero? Ies

18 Pick first zero

19 Tag element as *

20 Cover column of * element (by tagging)
Z2 Check for index limit

22 Increment row index

Step No. 1 - Cost Matrix Test

23 Look for a non-covered zero

24 Does one exist? no

25 Prime (') non-covered zero

26 Is there a starred (*) zero in this row? no

27 Cover row of element

28 Uncover column of starred element

Step No. 2 - Assignment Adjustment
no 29 Does last primed element have * element in column

30 Tag starred element as in sequence

31 Find primed element in row for current starred element
in sequence and tag

32 Un-star each 0 element in sequence

33 Remove column cover for each 0 element in sequence

34 Star (M) each primed () element in sequence

35 Cover each column containing a star (0)
Finis 36 Are all columns covered?

37 Erase all primes ('I

38 Uncover every row

StAo No, I - Cost Marix Adjustment
34 Find 'h" the smallest non-covered element in coot matrix

and mark with

4 Add h to non-aero elements of each covered row

4 Subtract h from nonm-ero elements of each non-covered column

Flgvre $.S Goeneral Assignment Problem Macro Program
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B) Each column is searched in order to guarantee that it has at least one

zero. When a column is found without at least one zero, the minimum

value for that column is selected and subtracted from all elements in

the column. These operations correspond to instructions 7 through 13

in Figure 3-5. Note that only column 5 does not have a zero, and the

minimum value of one is subtracted from each element as it is shown in

Figure 3-4 C). Again, the determination of no zero's in a column, the

selection of the minimum element and the subtraction, can be performed

globally in the APP, whereas these operations would have to be performed

sequentially in a serial processor.

C) Each row is searched foT4 at least oneidon-covered zero. If one or mJre

are available, one is selected and starred (*) and each element in the

column for the starred element is covered by a line. These operations

are shown in Figure 3-4 G) and described by instructions 14 through 22

in Figure 3-5. Again, these operations can be performed globally by row

in an APP, whereas a sequential search would be required by a serial

processor.

)' Here, the rating matrix is searched to determine whether or not a

non-covered zero exists. If one does exist, as it does in Figure 3-4 D),

it is primed as in D) which corresponds to instructions 23 through 26 in

Figure 3-5.

Note that with the APP, one operation can determine whether or not a

non-covered tero exists. A serial processor would have to search, as

a minimum, all non-covered elements until a zero is found. If no non-

covered seros exist, then every non-covered element would have to be

searched.

E) Next, it is determined whether or not a starred (0) zero exists in the

same row as the primed (') zero, which is the case in Figure 3-4 E).

Since this is the case, the column for the starred zero is uncovered
82
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and the row for the primed element is covered. These operations correspond

to instructions 27 and 28 in Figure 3-5. The process is again repeated,

beginning at instruction 23. However, this time, no non-covered zero's

exist. Accordingly, as per Figure 3-5, the process jumps to instruction

39.

F) From the algorithm of Figure 3-5, the minimum of all non-covered elements

is first determined. By referring to Figure 3-4 E), it can be seen that 2

is the minimum non-covered element. A square has been placed around

the element 2 to make its position in the matrix clear for the reader.

The numerical value for the minimum element is subtracted from all

non-covered columns and added to all covered rows. Note that the values

for the non-covered column elements that are covered by a row, do not

change. These operations correspond to instructions 39 through 41 in

Figure 3-5. These operations are most efficiently performed on the

APP since the minimum of all non-covered elements, and the subtractions

and additions can be performed globally, each within a single operation.

To the contrary, a serial processor would have to perform each of these

operations sequentially on all appropriate elements.

G) The operation returns to instruction 23. Again, there is a non-covered

zero, shown with the square around it, which is primed.

H) Again, there is a starred zero in the row of the primed zero. so the

cover (or line) in the column of the starred zero is removed and the row

of the primed zero is covered, as is shown and as described by instructions

V2 and 28.

1) The operation again returns to instruction 23 where a non-covered zero.

indicated by the square, can be found. However. this tim#e there is not

a starred zero in the row of the primed zero. Accordingly, the next

instruction jumps to 29.
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J) First the column of the last primed element is searched to determine

whether or not there is a starred zero in the column. In this case, there

is a starred zero in the column, as is shown by the starred zero with the

square around it. This starred zero will always have a primed element

in its row.

These elements are tagged as "in sequence". These operations correspond

to instructions 29, 30 and 31. Next, the operation is again started at

instruction 29, using the last primed zero. However, this time the last

primed element does not have a starred zero in its column, so the operation

jumps to instruction 32. Again, the APP can determine the element with

a starred or primed zero in the respective column and row. The serial

processor would have to check each element in the column or row until

the starred or primed zero is determined.

K) Each starred element in sequence is unstarred and its covered column

is uncovered. Each primed element in sequence is starred. Again

these operations can be performed globally with the APP. These operations

correspond to instructions 33 and 34.

L) The columns for all starred elements are covered and a test is made to

determine whether or not all columns are covered. In this example,

all columns are covered and the optimization process is completed. The

starred elements represent the assignments. It all columns had not been

covered, all primes would be erased and all rows uncovered per instructions

37 and 3b and the process would be begun again at instruction 23. Again,

all of these operations can be performed globally with the APP. but would

have tr. be performed sequentially with the serial processor.

As is evident iromthis simple example. the APP is ideally suited for solving

problems of this type. It can find maximum or minimum elements within any

row or column. the entire matrix or any tagged subset of the matrix. It can

8 . • . . . . . . . .



perform arithmetic operations simultaneously on these elements. It can chase

through the matrix, going down appropriate rows and columns from tagged

elements. These am'ethe types of operations required to efficiently solve these

types of problems.

3. 3. 7. Solution of the Binary Assignment Problem

3 3. 2.1 APP Solution

In this section the binary assignment algorithm is implemented by associative

processing techniques. The algorithm is described in Figure 3-6. 1 ý--minology

is defined in Table 3-I. The format for data stored in the APP is shown below:

Row Column
Indication Indication TAGS

If it is impossible to assign some resource to some Task. i. e., if the matrix

element value it zero, the element need not be stored in the memory. The

flow diagram of Figure 3-7 illustrates the computational process.

A program, written in the associative machine language, described in subsection

3. Z. 2, is presented in Figure 3-8. Note that a total of 31 instructions are required.

The number of instructions is invariant to the size of the rating matrix. It is

only necessary to alter the limits of the A. B and D counters in the appropriate

instruction~s as the size of the matrix varies.

The following three assumptions were made in working out the timing analysis.

1 I) Theve is an average of eight entries in each coalmn of the rating matrix.

2) An average of five iterations through the loop provides a solution.

3) The time required for ea.h instruction is as described in subsection 3.2.2.

There are two major timing loops in Figure 3-3 required for the row and column

index it.rations, namely:

11 Instructions Z6 -1ZIZ for rows

Z) Instructions Z12 -P Z19 for columns.

A.5
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1 Search row for single uncovered element
no 2 Does one exist?

3 Cover row and column oi one selected

4 Limit of row reached? e-

5 Increment row

6 Search column for single uncovered element
nro 7 Does one exist?

8 Cover column and row of one selected

S9 Lim it of colum n reached ? es

10 Increment column
Finish

no 11 Are there any uncovered elements left?

ypq 12 Was any assignment made during this iteration?

13 Pick first uncovered element

14 Cover row and column of one selected

Figure 3-o Fundamental Algorithm for Binary A,-signment
Problem
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TABLE 3-1

TABLE OF TERMS FOR THE

BINARY ASSIGNMENT PROBLEM

i - 1 <i 5n, indicates a particular row in assignment matrix

j - I <j 5n, indicates a particular, column in assignment
matrix

p - an index on i

q - an index on j

n - indicates size of the n X n assignment matrix

T - tags covered row or column

T2 - indicates when at least one assignment is made during
an iteration

II

T - indicates an assignment and represents the optimum
assignment

i8
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I Clear T 1  0, T 3  0
--02 Clear T 2  0

3 Set p , p = u

4 Searchi =p, T- 0

5 DP: 1

6 Write TV, T 2 aand T 3 = 1

7 Transfer matched word into DR

8 Searchj = q, Write T =I

L 9 p ul
110 Pp p+

11 Set q = , q-ul

12 Searchj = q, TI = 0

13 DP : 1

14 Write T1, T2 , and T3 = 1
15 Transfer matched word into DR

16 Search i p, Write T =1

17 q: u)

18 q q+1

19 Search T1 0

20 DP : 0

21 Search T = 1

22 DP : 0
23 Search T 1 = 0

24 Select lat match

25 Write T 3 = 1

26 Transfer from matched word into DR

27 Search i = p, Write TI = 1

28 Searchj = q. Write TI = 1

T 1 1, for a covered row or column
T 1, when at least one assignment is made during

an iteration

T3  1, when a null element is assigned and represents
the optimum aasignment

Figure 3-7 Flow Diagram of Program for the Binary
Assignment Problem
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it is necessary to iterate through instructions Z-6, Z-7, Z-8 and Z-12, and

Z-13, Z-14, Z-15 and Z-19, "n" times, multiplied by the number of iterations,

but through either Z-9, Z-10, and Z-11, or Z-16, Z-17, and Z-18 a total of

only n times independent of the number of iterations. Since these loops repre-

sent the principal timing requirement, the total time required can be expressed

as

T 2K n (1. 75 + .050 log 2 n)

+ n (2.0+ . 050 log2 n)

where

n - is the number of columns or rows in the matrix

K - is the number of iterations required.

3. 3. 2. 2 Comparison, APP with Serial Processor

As previously mentioned, a timing analysis for this problem, using two serial

,.rocessors, the A.N/FSQ-31(V) and the L-3500A, was available from a

t Librascope internal report. The data for each of these serial processors and

the calculated data for the APP are presented in Table 3-2. To provide a

reference, the L-3055A has a cycle time of 5. 0 microseconds and requires 113

instructions for this problem and the AN/FSQ-31(V) has a cycle time of 2. 5

microseconds and requires 84 instructions. The L-3055A and AN/FSQ-31(V) are

the central processors used in the 473L and 465L command and control systems

respectively.

The data of Table 3-2 are plotted in Figure 3-9 where the abscissa indicates

the size of the matrix, the left hand ordinate indicates the solution time and the

right hand ordinate indicates the solution time ratio of the APP over the two

serial processors. For a 1000 X 1000 element matrix, the time for APP to

solve the problem is less by a factor of 1000 than for either of the serial processors.

One criticism can be made in this comparison regarding the vintages of the

serial processors versus the APP. More sophisticated serial processors are
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available which can produce processing speed improvements in the order of two

to five over the AN/FSQ-31(V). However, even taking this factor into account,

the APP would still have a significant speed improvement in solving the binary

assignment problem.

3. 3. 3 Solution of the General Assignment Problem

3.3.3.1 APP Solution

The algorithm for the solution of the general assignment problem was presented

in subsection 3. 3. 1. A more detailed program is developed in this subsection

to determine the timing requiretnente.

The organization of the data within the associative memory of the APP is shown

below.
Rating
Matrix Row Column

Value No. No. Ta s

D -o i I IT--I 8
Note that eight tag bits are required. When "D" has a value of zero in the

weapon assignment problem, i. e., when a particular missile is not capable

of reaching a particular target. it is not necessary to store the row and column

indexes within the associative memory.

From Figure 3-5 in subsection 3. 3. 1, it can be seen that the algorithm for the

general assignment problem is di.ided into five parts, namely:

I) Initial adjustinwnt for maximizing or minimizing

4) Initial independent zero assignment

q) cost iii.ttri~ -rest

4) Asig iirznt &djustntAt

5) Cost matri% ;adjustmrnt

F•ow diagrams for rach of thrsr five- parts of the algý'rithmi wcrt first devvlnped.

Ternmnohogy rmp!oiv-d in the give fl',w d r is preorn•td in Table 1- 1.

Not- that t.-is not recjuirrd in f s jueswit part% u4 thr AlgoIrithm, art, r--ured.
S~91,
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I - i 9i <n, indicates a particular row in the assignment matrix

j - a <j Sn, indicates a particular column in the assignment matrix

p - an index on i
q - an index on j

h - indicates the size of the n X n assignment matrix

D - rating matrix value for a particular element

d - a binary digit index on D

d i - the initial binary digit index on D

DA - a limit search on D

D d - a single digit search on D

Particular tags used in each of the five parts of the algorithm are:

1. Initial adjustment for minimizing

TI - tags a row (or column) for a particular iteration sequence

T3 - tags used to indicate a digit borrow in subtraction operation

Z. Initial independent zero assignment

TI - tags all zeros

Tz - tags s~arred zeros

T 4 - tags covered columns

3. Cost Matrix Test
T1  tags all zeros

Tz - tags starred zeros

T 4 - tags covered columns

T - tags primed elements

T- tags •.ast primed element

T7 - ta8ý covered rows

4. Cost Matrix Adjustment

T 3 - tags smallest non-covered element in matrix

T - used to indicate a digit borrow in the subtraction operation

then a digit carry in the addition operation

S. Assignment Adjustment

T2 - tags starred zeros

T3 - tag$ sta..red zeros in sequence

T 4 - tags covered columns

T - tags primed elements

T - tags last primed element initially and then all primed

elements in sequence

T7 - Tagr covered rows

At completion of algorithm, tag TI contatsn the elements representSng

the assignments.

Table 3-3 Definition of Terms for General Assignment Problem

: ~95 :
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Figure 3-10 presents the flow diagram for a minimizing assignment problem

illustrated only for rows. The program for the columns would be exactly

the same, except that column indexes would be specified. The flow diagrams

for the initial independent zero assignment, the cost matrix test, the cost

matrix adjustment and the assignment adjustment are shown in Figures 3-11,

3-12, and 3-13.

From the flow diagrams, the program in machine language was constructed

and is presented in Appendix D. Note that 132 instructions are required.

Note once again that the number of instructions is inuependent of the size of

the cost matrix.

In working out the timing requiirement, the following assumptions were made:

I. D can be represented by 10 significant binary digits

2. 4X 100% of the N rows initially have no independent zeros

3. N iterations through cost matrix test loop (step 1)

4. -• iterations through adjustment loop (step 3)

S. 4-N iterations through assignment adjustment loop (step 2)

where D is the rating matrix value and N is the size of the N X N assignme&xt

m at r ix.

Ubsing these assumptions, Table 3-4 was prepared to represent the basis for

the timing cauulations for the general assignment problem. Based on Table

,-4, the ca~culated timing values are shown in Table 3-5.

1. 5. 3. Z Co:nparison, AP" with Serial Processor

The speed utility of the APP compared to a serial processor in uolvmng the general

asoignment problem was next investigated. In oader that the comparison could

be made on ma,:hines representing the sar-i technological vintage, a sophisticated

crrial processor svprewsenting the present state of the art was hypothesized.

Asunimptions made on this serial processor are:

1) 1he inesnory access time isO. 5 microse ýond
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Check for Z Set d u t, d1 AQ
a Zero in Setpd=u, di -,

A Row 3 Search DI = 0, i = p

4 DP*: 0
k('n'eat fo
Column 5 p :u

-- 6 p~p+,l

7 Clear TI' 1 I

8 Set di = ul, d=,f

Find 9 Search Dd = 0, T 1 l, : p

Smalles .-1I DP*:0
Elemen 11 DP*: I
inRow 12 Search Dd 1, T - 1, i p, Write T 0

13 d:R1 >

14 d=d-I

15 Search T1  1, Write T 0

16 Select * Jst match, write T I

17 Set d = U,, d ,

18 Clear T3 = 0

19 Search Dd = 0, T1  =1

20 DP*0

Subtrac 21 Search Dd =0, T3 = 1, i = p, Write Ddd = I
Smallest 22 Search Dd = 1, T 3 = I, = p. Write Dd = 01 T3 0

Element 23 Search Dd = 1, T 3 = 0, i p, Write. Dd = 0

24 Search Dd = 0, T3 = 0, i p, Write Dd d rl, TI3 =1

Z5 d:

26 d d + 1

Figure 3-10 Flow Diagram for Initial Adjustment for
Miaximiur.g for rows. General Assign-

ment Problem
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I Set p, , p u)•

2 Search i p, r I = 1, T4 =0

3 DP: 0

4 DP:1

5 Select ist match

6 Write T I

7 Read q columns for matched word into DR

8 Search q DR, Write T4 =1
To Step 9 p:u.j

10 p p +1

Figure 3-11 Flow Diagram for Initial Independent Zero
Assignment, General Assignment

Problem
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Step 1 - Cost Matrix Test

1 Clear T 5  0, T6 = 0, T7 =0

2 Search T1 1, T4 z 0 d FXom Step

- 3 DP: 0

4 DP:

5 Select lst match

6 Write T 5 = 1, T6 = l

7 Read i columns for matched word into DR

8 Search i DR, T 1z =1

ToSte =9 DR : 0
10 Search i =DR, Write T 17 =1

11 Search T 6 = 1

12 Read j columns for matched word into DR

13 Search j = DR, Write T4 =0, T6 = 0

Flow Diagram for Step 3 - Cost Matrix Adjustment

1 Search T = 0, T = 0, D Min (smallest non-covered
element in matrix)

2 Sear,.h T = 1, Add g (Adds g to covered rows)

3 Search T1 = 0, Subtract g (subtracts g from uncovered
columns)

Figure 3-lIZ Flow Diagram for Stop I- Cost Matrix Test
and Step 3 - Cost Matrix Adpustment. General

Assignmnnt Problem
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From I SearchT I
Step 1 6

2 oRead j column for matched word into DR

3 Searchj = DR, Write T4 = 1

4 Search j =DR, T 2 -1, Write T I2 3
5 DP:0

6 Read i and j columns for matched word into DR

7 Searchj = DR, Write T4 = 0

m 8 Search i = DR, Write T5 = 0

9 Search T 3 -1, Write T2 =0

10 Search T 6 = I, Write T2 = 1

11 Search T 4 = 0
Finished = 12 DP : 0

.4 13 Write T 5  0, T = 0, T = 0, T3 0
To Step

1

Figure 3-13 Flow Diagram for Step 2 - Assignment Adjustment.
General Assignment Problem
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Number

Particular of Time per Total
Subroutine Section Iteratione Assumptions Iteration Time

Check for 2N Rows and 4A SNA
Initial zero columns

AdjuetmeniSals
eSmallest 5% of ind a 3.5A NA 3.28for .951D

Minimizing rows in. log2 D log, D
in rows 1.9N - and alfway

or .95N colum, thru NA 1.9
columns have limit ogD logD

zero' s
u a. 576 of rows andSubtractcolumns have A 3.5 NA 6. 56

zero's log 2  logD

Initial
Inditiden N l-1_N has inde- 6 1/2 A (N 4_Nl)Zndependent N pendent zero (65A)Zero !EN

Assignment 1 -N has no inde- 3A i-N 3A

pendent zero's

Cost FN iterations
Matrix VN FN within loop and 10A N 10A

Test changes in
allocations

.5 Full D 3.5 A

Minimum log2D 3.0"7TA

Cost .5 1/2 D 2.5 A log2 D
M at rix - ____N_ log 2D ____

"2" 3.5A -A3.5Adjust Add log2 D 2

S 3.5 A A
Sub lgzD ZA 3.5

logoD

Find se- 5/6
Assignment quncnd e- Fh1J N 6A N A6quence and

tag

Adjust 4.5 A
N ~4.5SA

Table 3-4 Basis for Timing Calculation for General

Assignment Problem for APP
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2) The serial processor has scratchpad memory and instruction look-ahead

so that the instructions and data can be accessed into the scratchpad

memory during and in parallel with the execution of arithmetic and logical

processing.

3) The arithmetic unit is the parallel type so that the processing operations

required for this problem can be performed in less than the access time

of 0. 5 microsecond.

Two basic processing operations are required for the serial processing. The

first involves accessing a word from memory and then making a comp'a.-,on.

An example of this operation is determining the minimum element in a row or

column of the assignment matrix. The number of memory accesses required

to perform this type of operation is shown below.

I Instruction - bring

2 Bring word

3 Instruction - compare and jump

4 Instruction - exchange word in scratchpad memory

5 Instruction - jump

One memory access time is required to bring an instruction as well as to bring

a word from memory. Assuming that the instruction interpretation and the

arithmetic and logic operations are performed in parallel with the memory

access, this instruction sequence is performed in five memory access times in

the worst case, and three, access times in the other case. It is assumed that

four memory access times or two microseconds will be required, on the

average, for this type of operation.

The second type of operation involves accessing a word from memory., subtracting

or adding to the word contents and then storing the new value back into the

word. An example of this operation is subtracting the minimum element in a

row or column in the assignment matrix. The number of memory acc.esses
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required to perform this type of operation is shown below:

I Instruction-word

Z Bring word

3 Instruction add or subtract (operation takes place in
tparallel with next access)

4 Instruction store

5 Store into word

6 Instruction ji,.mp

In this casessix access times or three microseconds will be required.

Based on these assumptions and on the flow diagram of Figure 3-5, each of

the five subroutines in the flow diagram will require the approximate times

shown below, where

A - stands for access time of memoryc

N - represents the number of rows or columns in the rating matrix.

Initial adjustment for minimizing

TO COMPARE - ZN2 4 A
c

TO SUBTRACT - ZN 6 A
c

Total Time Z0 A N2

c

Initial independent zero assignment

Assumesl 100% of N rows initially have no independent zeros andon

the average,1/2 N elements are required in rows or columns to find

a non-covered zero.

TO FIND NON-COVERED ZERO- 1/2 N 4 A
C

TO COVER COLUMN OF - N (N C)4 A
STARRED ELEMENT .

Total Time 6 A N2 -4 A N("C C

Cost Matrix Test

Assumes iterations where no non-covered zeros exist. JR iterations

where non-covered -,rros do exist. and 0. Z5 N elements must be

searchrd on the average to find a non-covered itero when it exists.
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WHEN NO NON-COVERED ZEROS EXIST - N2 qi 4 A

WHEN NON-COVERED ZEROS DO EXIST - .25 N?[N 4 A
C

Total Time 3 A N T4-N

Cost Matrix Adjustment

Assumes s-, iterations

TO FIND SMALLEST ELEMENT IN MATRIX Nit- 4 A

TO SUBTRACT OR ADD SMALLEST ELEMENT N'fN 6 A

Total time 5 A N2 -N
C

Assignment Adjustment

AssumeWWl iterations and 4A•linkages of starred elements in sequence

No linkages -

No. of column covers removed per linkage - N

Total Time ( 4V -N N N) 4 Ac
CI

The timing requirements for each of the five subroutines are tabulated in Table

3-6 for several cost matrix sizes. The next to last row indicates the total

time required in milliseconds for the matrix sizes shown, and the last row

indicates the speed improvement of the APP over this sophisticated serial

proceusor for matrix sizes shown. As shown~for a 1000 X 1000 matrix, the

serial processor would require 139 seconds or 2. 3 minutes to solve the general

assignment pi'oblem,whereas the APP would require 7Z. 7 milliseconds, repre-

senting a speed improvement of 1910 times.

3. 3. 4 Solution of the Transportation Problem

3.3.4.1 APP Solution

The algorithm for the solution of the transportation problem is presented in

Figure 3-14. Note that the algorithm is again divided into five parts, where

adjustment for minimizing or maximizing and the cost matrix adjustment parts

105

rI

: I
[ - --



o 0

a 0 0 1n

ull o oA o D0
c 0

O N 0 0 0

oc 00 0 0

N 0 N

- '.0

N N
'U

0 00 0 0c0
N 1O - N1 ,-O

" t .:
N

0

00

0 0 N 0
-o 0,

.5 0

0� N 0•0a= N N O 5

u~~~ < < ; r:r: o

l- - - 1

C 0'., N =* N - o10

JILL~

C -

o Z 0543

Sz • -' .
NE Z z 0 •0" '

"o Z N N Z 'U.

Z IA I

.Io,6

S... . . . -I - + iil - - - II ..



Initial Zero Adjustment for Maximizinj

13 Same as Assignment Problem

Initial Allocation

14 Set row initial and limit index

15 Search row for first zero in cost matrix

16 ilocate is much to shortage as is available and tag

"1as essential zero (T 2 )

17 Shortage : 0

18 IF = Tag as T4

19 Surplus : 0

20 IF = tag asT 3

no 21 Does row have another zero?

L 22 Find next zero

2.9 23 Check for index limit

24 Increment row index

Cost Matrix Test - Step 1

25 Search for covered zeros

26 DP : 0

27 Find any non-covered zero and prime it

28 Row surplus : positive (for last prime element)

29 Cover row (of last primed element)

30 Search for any twice covered essential zeros in row

31 DP: 0

32 Pick one and star it

33 Uncover column of one picked

34 Clear last primed element tag

Quota Adjustment - Step Z

35 Find Z a 0, in Z column

36 In there one?

37 Find 0' in U* row

38 •Find min of Z row .vrplus, all 0e allocations and 0'

tinal column shortage and call it h

4 9 Increase quota for each 0' by h

40 Decrease row surplus and column shortage by h

41 Decrease 0# quota by h

41 Clear all stars and primvs and all rows

43 Tag all columns where discrepancy is *ero

44 Are all columnra covered?
S~~~~~Cost Matri~x ýAdste -Se

--.. @$&me as assilfnment problemn

i Step t

Fig4ure 3-14 Transportation Problem Algorithm
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are identical to these same parts in the assignment problem. Terms used in

Figure 3-14 not previously defined are defined below:

Quota - indicates the amount of commodity assigned to a particular element in

the assignment matrix.

Surplts - indicates the amount of commodity remaining at a particular source.

At the beginning of the algorithm, the summation of all surpluses

represents the total of the commodities available. At the conclusion

of the algorithm, all surplus values are zero, since all Eurplus commodities

at sources will have been assigned to the destinations.

Shortage - indicates the amount of commodity yet required for a particular

destination. At the beginning of the algorithm, the summation o.f all

shortages represents the total of the commodities available.

At the conclusion of the algorithm, all shortage values are zero, since

all available commodities at the sources will have been assigned to the

destinations.

Essential Zero - indicates a zero in the cost matrix whose quota is positive

(non-zero).

Also, as in the preceding algorithm, certain rows or columns of he cost ma.trix

are distinguished by covering them, certain zero elements in the cost matrix

are distinRuished by starring (*) them, and others are distinguished by priming

(1 them. Definition of tags and other terms used in Figure 3-14 are:

TI - a covered column

T - tags essential zros

T , -tags rows where surplus - 0

T4 - tags column where shortage = 0

Z - denotes at, sncovered 0' (there will be one at point where listed in
o algorithm)

71 - denotes a 0" in 7 's rulumn
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A statement of the algorithm in words which helps to clarify Figure 3-14 is

presented below. The statement begins with the initial allocatiun point in

the algorithm.

Initial Allocation - Find a zero element Z in the cost matrix. If both its

surpluses and shortages are positive, allocate a quota to Z in the

amount of the smaller of the two, and reduce each by that same amount.

Cover a column when its shortage becomes zero. Repeat, for each zero

in the cost matrix.

Cost Matrix Test - Step I - Choose a non-covered zero and prime it. Consider

the row containing it. If the surplus for this row is po.5itive go at once to

Step 2. If the surplus for this ro-v is zero, cover the row, then star each

twice-covered essential zero Z in the row and uncover Z's column.

Repeat, unless all zero',, are covered, at which time go to Step 3.

Quota Adjustment - Step- Construct a sequence of aIterna ing starred and

primed zeros as follows: Let Z denote the uncovered 0' (there is only

one). Let ZI denote the 0 in Z 's column (if any). Let Z2 denote the

0' in Al's row. Let Z 3 denote the 0* in Z,'s column (if any). Continue

until the sequence stops at a 0', Z ij which has no 02 in its column.

(This sequence is unique since no column contains more than one 04,

and no row m'-c than tne 0').

The surplus in Z 's row is non-zero, the shortage in Zij. Is Chtrimn is

non-zero and the quota assigned to each 00 in the sequence Z ... 7..

* is non-ztro. Let h be tlhe smallest of these positive numbers. Increase

the quota of each 0' in the sequence by h. and decrtease the quota of each

00 in the sequence by h. Erase all stars and primes, uncover all rows.

and cover every column whose shortage is soro. Return to Step I.

Cost Matrix Adjustment - Stop.. - Find #jthe smallest non.-covered element

in the cust matrtx. Add g to every covered row and skibtract g from e,.ery

un'. Vrrd Column. Return to Step l~nnt altering any stars, prims or
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covered lines.

The organization of the data within the associative memory of the APP is

shown below: Rating
Matrix Row Column

Quota Surplus Shortage value No. No. Tags

Q Sp Sh D i....T1

In comparison to the general as,3ignment problem, note that Q, Sp and Sh additional

data columns are required as well as six additional tag bits. Also, as with the

general assignment pi'oblem, it is not necessary to store data for elements where

the rating matrix value "D" is zero. These types of elements would correspond

to. missiles that could not reach a particular target in the weapon assignment

problem.

Definitions for tags used for each of the five parts of the algorithm are described

below.

1 initial adjustment for minimizing

- tags a row (or column) for a particular iteration sequence

T3 tag used to indicatc a digit borrow in subtraction operation

2. Initial allocation

T - tags a covered column

T - tags essential zero elemerts in cost matrix

T3 tags rows where surplus = 0

T - tags columns where shortage = 0

T5 tags all cost matrix elements with zero value

T - temporary shortage for last essential zero

T7 tags covered rows

- used to indicate that row has only one remaining zero
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3. Cost Matrix Test (Step 1)

T 1 - tags a covered column

T3 - tags rows where surplus is zero

T4 - tags columns where shortage is zero

T 5 - tags all cost matrix zero elements

T 6 - tags last primed element

T 7 - tags covered rows

T9 - tags all primed elements excluding the last one from Step 2

4. Cost Matrix Adjustment (Step 3)

T -tags a covered column

T5 - tags all cost matrix elements with zero value

T7 - tags a covered row

T - used as digit carry or borrow in addition or subtraction operation
8

5. Quota Adjustment (Step 2)

Tl -tags a covered column

T- tags ,ssential zeros

T 3 - tags rows where surplus = 0

T4 - tags columns where shortage 0

T - temporary storage for last essential zero
6

T7 - tags covered rows

T0- tags a star (") on a line segment

T11 - indicates the last tagged 04,

T- tags a prime (') on a line segment

T1- indicates the last tagged 0'

T4- tags the smallest element in the sequence
14

Figure 3-10, the flow diagram for the "initial adjustment for minimizing"

part of the algorithm for the assignment problem is applicable to the

transportation problem. Figure 3-15 indicates the flow diagram for the initial

allocation part )f the transportation problem algorithm, Figure 3-16, the

c.ost matrix test and cost rratrix adjustment parts and Figure 3-17, the quota

;,djustment part.
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From initial zero
adjustnient for
mafxlm.XI ' Clear T, T

2 Set p =I , p =u?

3 Clear T 6  0, T 8  0, T 7 =0

4 Search i p, T 1 I-=I, T 5 1

5 DP:0 0

6 DP:I

7 Write T = 1

8 Resolve a multiple match zero

9 Write T2 = 1, T 6 = 1

10 SH> SU at T 6 = 1

11 Search T 6 = 1, Write T2 = 1

12 Read i and j columns for matched word into DR

13 Q at T =SU at T 6

14 Search j = DR, Write T 7 = 1

15 SH at'T = SH at T6 - SU at T6
16 Search i = DR, Write SU 0

17 SH<SU at T 6 = 1
18 Search T 6 = 1, Write T = 1

19 Read i and j columns for matched word into DR

20 Q at T6 = SH at T 6

21 Search i DR, Write T = 1
7

22 SU at T7 =SU at T7 - SH at T6

23 Search j DR, Write SH 0, T =1

24 Search T8 = 1

25 DP : 0

26 Search T6 = 1, Write T = 1

27 Read i and j columns for matched word into DR

28 Q at T 6 = SU at T6 '

29 Search i DR, Write SU = 0

30 Search j DR, Wrife SH = 0, T1 = 1

31 Lim : u)To Ste 1

32 p=p l

Figure 3-15 Flow Diagram, Initial allocation,
Transportation Problem
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Flow Diagram, Cost-Matrix Test Step I
I Clear T 6 = 0, T 7 = 0, T =1 , T9 = 0 F e

2 Search T = 0, Write T = 0
Finished 41

3 DP : 0 (from last search)

4 Search T1 = 1, T3 = 1, T 15 =------7

5 DP:O

6 DP:I

7 Select 1st match
To Ste 2 8 Write T6 1, T lZ 1

9 Search T 1 0, T5 1, T7 0

10 DP:0

11 DP:

12 Select Ist match

13 Write T9 = 1 (tags as primed element)

14 Search T9 = 1, Write T7 = I (for row of matched
element)

15 Write T1 = 0, for column of matched element

Flow Diagram, Cost-Matrix Adjustment Step 3

-0 1 Search T =0, T7 = 0, D = min (smallest non-covered
element in matrix)

2 Search T =1 , add g (add g to covered rows)

3 Search T = 0, subtract g (subtract g from uncovered
1 columns)

4 Clear T 5 = 0

5 Search D = 0, WriteT = 1
5

Figure 3-16 Flow Diagram, Cost-Matrix Test - Step 1 and
Cost-Matrix Adjustment - Step 3 Transportation

Problem
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S• l Clear T 0 -- 0, T ! 0, TI 0, Ti = 0, TI4 - 0

Z Find column j' for T6 = I (last primed zt~ro)

I Search column j' .and T 1 1, T 7 = , T2 : I (twice covered
essential zero)

4 DP:0

5 Write T10  1 j, T 11  I, (for matched word)

6 Clear TO3  0

7 Find row i for T1 1 l I

8 Search row i and T9 2 l, Write T : a 1, T13 Z I

9 Clear T 0

10 Find column j' for TO = I
11 I Find minimum at T 6 1- and SP; T 13=i and SH; TI0 =I and 0
1Ž Write T1 4 =1

13 DP : I

14 Write T 1 0 and hold detector plane

is Select first match, Write T 1
16 Search T14 : 1, TII = i

17 DP : 0

1b Search T14 : 1, T1 3 z I

19 DP : 0
M0 Aid SP at T14 = I to 0 at TIZ = I

21 Subtract SP at T 1 from Q at T I
14 Q T1 0 :

22i Find j' column fur T 1. = 1

231 Subtract SP at TI 4  I, from SH at j'

241 Si : 0

251 Write T4  0 at
Zti Find i' row for T I

27 Write SP = 0, T 3 0 at i'

Z8 Add SH at T14 2 1 to Q at T 1 =

29 Subtract SH at T 1 from Q at T 0 1

30 Find i' row for T.
31 Subtract 511 at T14 v I from SP at i'

I2 SPP:0
3•3! Write T = 0, at i.

34 Find J' column for T1 1 I

151 Write SH = 0, T 4 = 0 at j
At, Add 0at T 1 4 = Ito Qat T 1 2 :
37 Find j' column for T 0 =

3S• Subtract Q at TN4 1 frum S|1 ,t j'
3, SHt : 0

401 Write T = 0 at

41 Find i' for T :1

42 Subtract Q at T I from SP at i'
43 SP : 0

44 Write T3 = 0 ati

45 Subtract Q at T14 1I from 0 at T10 - I

S4-,I Write T, = 0. T :0 , T , =0, T 7  - 0

47" Search Q>0, Write T I

FlgLkrt, .-17 FloM Diapram, Quota Adjttstmtnt - Step 2
Transportation Problem
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More machine language instructions would be required for the transportation

problem than for the assignment problem. However, all of the fundamental

processing operations have been defined in the machine languag&-prograrn

for the assignment problem. Accordingly, a machine language program was

not written for the transportation problem.

The timing requirement for the transportation problem was worked out in

terms of the flow diagrams.

The following assumptions were made:

1) D, the rating matrix value, can be represented by 10 significant

binary digits.

2) For convenience, the rating matrix will be assumed to be an NX N

square. Note that the square matrix is not a requirement for the

transportation problem as it was for the assignment problem.

3) Initially, the average number of surpluses per source for each row

or of shortages per destination for each column is'f. Note that with

this assumption an analogous assignment problem would require a cost

matrix of size NvM-x Nf.

4) In the initial allocation loop, there are an average of 41f-N allocations

made per row.

5) For Step 1 - cost matrix test loop, there is an average of T'Nconsecutive

iterations within the loop, but repeated fFNtimes.

6) The Step 3 - cost matrix adjustment loop is iteratedIN times.

4 7) The Step Z quota adjust loop is iteratedf N'times.

Using these assumptions, Table 3-7 was prepared, representing the basis for

the timing calculations for the transportation problem. Based on Table 3-7,I
the calculated timing values are shown in Table 3-8.

3. 3. 4. 2 Comparison APP with Serial Processor

The speed utility of the APP compared to a serial processor in solving thV

transportation problem was next investipated. The same serial processur,
115
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"Section Number
Sub Within of Time per Total

Routine Loop Iterations Assumptions Iteration Time

Initial
ZeroAdjst- Same s in Table 3-4Adjust-

ment

Initial [-' 4 Average of'r "f•(5.5+31og 2 N) [ý/'N5.5+3 log2N)
Allocaticn allocations per

column but only +13.5+11.5 log2 N +13.5+11. 51og 20

Scan be made AR

RN per row
Cost number of
Matrix IT v_'T changes in allo- (7. 5 + 2 logN) NA(7. 5+2 log 2 N)
Test cations and ViN

iterations
within loop

Mini- 1'N .5 Full 1 3.5 A log2  3. 0 -V-N A log2
mum 2 / Z

•5 1/21 Z . 5 A log 2 1

Half the time
Add this loop is re- 3.5 A log

Cot Add quired to adjust 5
Matrix rating matrix

Adjust- Sub -•35Alg?'

tment

New log Z  + I
zero'$ s '

TOTAL N (10 logZD

Slog 2 Q + 1)

Find 5.5 + 2 log N

Quuta and tag + log2 Q
Adjust-I I

j Adjust . 13.5 + 11.5

ment AlogZ Q

TOTAL. 
APT [(lug2Q+l 5

I'jthv •o". |hsii_ of rtriming Caicul t4un for Transpurtation Proiilvh, with APP
116
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hypothesized for the general assignment comparison described in the last sub-

section, vas assumed for this comparison. The transportation problem also re-

quires the same two basic processing operations for serial processing as there

described. Therefore, the same basic timing cycles are assumed asthere

desc ribed.

Based on these assumptions and on the flow diagram of Figure 3-14, each of

the five subroutines in the macro flow diagram will require the approximate

tintes shown below, where

A - Stands for access time of memory and is assumed to 4~e 0. 5c

microsecond

N - represents the number of rows or columns in the rating matrix

Initial adjustment for minimizing (same as assignment problem)

To Compare 2N2 4 Ac

To Substract ZN2 b A
c

TOTAL 20A N2

c

Initial allocations

Assumes an'average of 4d" alloca!ions made per row and an average of

3/4 N eletnents dowxn a row before either shortage or surplus becomes

zero.

To search lor teru,4 - 1/4 N- 4 A c

Allocate to Shortage

Greater than compare - N A A

Skkrtract - N N•J6 A C

Update iurpluses and - ZN -i4 A
Shortsges c

)

TOTAL " A N ÷ I+A N N A N" •-'-

C t,,.t i.%ltrix Trot - It-pI

N
S-T " tt %tti . ts %a herv ittirp|v.' lor row ;)f non-comered xere• s 1

1 1•



positive, r-N~iterations where all zeros are covered and on the average

0. Z5 N2 elements are searched to find a non-covered zero with a positive

surplus in its row.

When all zeros are covered -

Finding Zeros - N 2 '1N4 A

Row Surplus Test - N 2'vN'6 A

Neglect remaining operations - 0

Non-covered Zero with positive row surplus

Finding zeros - 0.25 N2(f 4 A

Row surplus positive 0. Z5N Z - 6 A
test - - T C

TOTAL ll. 25ANZN

Cost Matrix Adjustment - Step 3

Assumes I• iterations

Search for minimum non-covered element- 4 A N2ýN

Subtract or add smallest element - 6A AN 2

C

TOTAL 5 A N2 jN

Quota Adjustment - Step 2

Assumes N iterations and sequences on the average

To determine sequence - -k N- N 4 A
c

Final minimum element - IT 6 A
in sequence c

Arithmetic operations on - O T i1 6 A
*9 Csequence

Remove row and column - N 2 i-4 A
tags and primed and C

g starred elements

N4/$ 1 4A /N1I6 5/1A
TOTAL It AcN 4  cAN +4A

rhe timing requirements (or each r_( these five subroutine*- are tabulated in

Tiable 1-9 for setveral cost matrix si•ies. The next to last rum indicat,-p th.

t.tl t~ni• rrt, air.d in nviliart, ,d.s it' týh r tr r a .:c. s,- ,s % . .10"d t- * -
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row indicates the speed improvement of the APP ovr the serial proce.ssor for

matrix sizes shown. As shown, for a 1000 X 1000 n; atrix where it has been

assumed that these are N XVN"or il, 600 total allocations made, the sophisticated

serial processor would require 352 seconds or 5. 9 minutes to solve the trans-

portation problem, whereas the APP would require 264 milliseconds representing

a speed improvement of 1330 timee.

3. 3. 5 Timing Comparisons for Network Flow Problems

Table 3-10 is a summary of the timing requirement for each of the three variations

of the network flow problem, and illustrates the timing efficiency of the APP

over a serial processor. However, the data shown for the serial processor

should be interpreted as being only representative. Actual values would depend

upon the particular serial processor employed and on the degree of cleverness

used in constructing the program. In addition, the reader should bear in .mind

that the solution times shown are based on assumptions miade on the number of
t,

iterations required within various parts of the algorithms. Even though the size

of the cost matrix might remain constant, partic,'*ar solution times would vary

as the initial v.lues of the variables change. However, the assumptions wt.re

made on the basis of representing a typical case for a problem Atatement.

Nevertheless, the same assumptions were maintained in working out the tin ing

for both the APP and serial processor. Accordingly, even though the solution

times would vary from problem to problem, the ratios of efficiency shown should

remain relatively constant.

From Table 3-10, note •hat the timing requirement in the three proUlen cras-s

for the APP is increasing appro;imately linvArlI or in direct proportion to "N'N

the order of the cost matrixtwhere the rust mAtrix was assut'md square %or the

transportation problem. In contrast, the timtng reqtiremrnt in the therr prtitalmr

cases for the serial processors is in,:reasing nearly in proportion to "N or

the ctub- of the siic of the matrix. This. then, rrprirkrnts the effirtct.cv fa.t-'r

,,I the APP ovr- a serial provrsscor for vrt ..,rk flow prhblvi-ilk. oi ,Ahich the
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weapon assignment problem is an example.

However, of even greater importance for the weapon assignment problem, is

the fact that the APP can determine optimum solutions in a matter of milli-

seconds, which must be considered as virtually real time for the weapon

assignment problem.

In contrast, where the matrix is large, the solution time for a serial processor

would require in the order of seconds for the binary assignment problem, and

in the order of minutes for the transportation problem. Obviously, for

realistic weapon assignment problems which do require large matrices, a serial

processor is not capable of providing real time solutions. In a time of national

emergency, where pertinent initial data in the matrix could change right up to

the instalt of the weapons assignment and release thereof, the real time solution

capability is essential. This capability is available with the APP and is not

available with a serial processor.

3.4 SUMMARY AND CONCLUSIONS

The applicability of an APP for the solution of ,ietwvrk flow problems and~in

particulars the weapon assignment problem, was investigated. The network

flow problem was couched within the model of the so-called Hitchcock-Koopmans

transportation problem. Three variations on this model were considered as is

listed below in the order of model complexity.

1. Binary Assignment Problem - This is a simplified version of the

assignment problem, where the coat matrix has a value of only zero or

one. The cost matrix is square.

Z. Assignment Problem - This is a simplified version of the transportation

Sprobler.t, where each source initially I as available only one unit of the

commodity, and each destination has a rcq•,iremont of only one uii. Gf

the commodity. The cost matrix is square.

1. Transportatio:n Problem - n this case. the sourcc initially has available

12



one or more units of the commodity, and each destination has a require-

ment of one or more units of the commodity. The ccst matrix neednot

be square.

An APP was fortilulated, which can solve any of the three variations of this

problem. The formulation of the APP included organization, a description of

the command set and timing requirements for the commands. The basic structure

of this APP is identical with that of an APP previously formulated for pattern

recognition 5,16. However, it was found that three niew features were required

for matrix manipulations, namely:

1. A "D" counter capable of being incremented as well as transferring its

contents into the data register. It provides row and column indicators

for searching purposes.

2. A match indi._ator DP=l to indicate when oaneand only one word responds

to a search operation.

3. A multiple match resolver to select one word from two or more matched

words.

These additional features not only give theAPP a utility for solving the Hitchcock-

Koopmans transportation problem, but also for manipulating matrices

required for a wide gamut of problem types. Linear programming, dynamic

programming and matrix inversion are examples of possible application extensions.

From the algorithms for the solution of the three variations on the network flow

problem, APP type program flow diagrams were constructed. In the case of the

binary assignment and general assignment problems, programs in terms of the

APP machine language were further written. Since all the basic types of APP

operations were defined in these two programrs. a machine language program was

not written for the transportation problem. From these programs and flow dia-

grams, solution timing requirements were determined for problems with cost

matrices of various sizes.
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The solution times for the APP were compared with a serial processor counterpart.

In the cabe of the binary assignment problem, a description of the 3olution on

a particular serial processor was fortunately found in the literature. In the case

of assigiment and transportation problems, a sophisticated serial processor

wag hypothesized and an estimate of solution time was derived from. the APP

flow diagrams.

It was found that the APP has a timing efficiency factor of from one order to

three orders of magnitude over its serial processor counterpart for the three

variations of the network flow problem considered. The one order of magnitude

factor was applicable for smaller matrices considered, of around a 30 X 30 size,

and the three orders of magnitude factor was applicable for the largest matrices

considered, of around a 100Q X 1000 size where the cost matrix was assumed

square for the transportation problem. However, of even greater importance

for problems with dynamic data, and where fast solution times are of the essence,

as in the case of the weapons assigument problem, the APP determines solutions

in a matter of milliseconds, whereas for large matrices the serial processor

requires from several seconds up to several minuted. The APP determines

solutions in what must be considered as virtual real-time in respect to a human

o:)erator's reaction time, which is not the case for serial processors for large

matrices.

The weapons assignment problernrepresentative of network flow problems, was

modeled into a Hitchcock-Koopmans transportation problem. However, the
04

Hitchcock-Kcopmans transportation problem, and therefore the solutions here

presented, have application to problems of interest other than the weapons

assignment probim. Gther possible applications include:

I Other types of network flow problems 14. of which one pertinent example

is message switching to optimally distribitc messages in a complex

command and control system.
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.. More conventional transportation prob'ems, where the cost matrix might

represent estimates of distance or time, as well as costpand the carriers

might include air tankers, ocean tankers, freight cars, trucks or other

such vehiicles.

3. Personnel assignment probl~ms in which~typicallythe problem is to

assign N different men optimally to N different jobs.

4. Forms of the traveling-salesman problem i. The name comes from the

problem cf a salesman wishing to travel from his hoLne to each of a

number of specified cities, and then return home in such a path as to

minimize the total distance (or time). Distribution of material from one

common carrier with sequential drop-offs at several destinations is one

example of this problem.
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APPENDIX A

AFP SEARCH ALGORITHMS

1.0 INTRODUCTION

This appendix describes a va.iety of search algorithms which may be

used in the Associative File Processor (AFP) of Chapter I1.

The associative file processor (AFP) may be visualized as a combination

of a rotating disc memory and an ascociative memory integrated to per-

form rapid searching of very large data files in response to complex

queries.

The data file is stored bit berially on a disc memory having one fixed head

for read or write on each tra,:k. An associative memory is employed to

search simultaneously the parallel bit streams emanating from a number

of disc heads against a set ol search criteria.

The data base of the AFP consists of a number of files of records rtored

on the disc tracks. In a typical system each track is divided into 64

blocks, and each block consists of 1Z8 characters with 8 bits per character.

The records are made up of fixed-length characters. There will be no

loss of generality if it is assumed that one record is 128-characters long,

i.e. , one record occupies one block on the di.tc track.

Referring to Figure 1, each record is typically divided into several fields,

each of which consists of one or more characters.

Each field to be searched will have one search criterion. consisting of a

key word, and a specified search mode. The key ward ir stored in the key

register, and the search mode is stored in the control register which also

-notvs the fields to 5e searched. The mask register is used ior masking or

W ignoring some of the bits in the field. In the case of BSo;dot, e-•-ar-1 which

requires two key words, the mask register is used to store the other key

word.

The search types for individual fields may br designated as follows:

I. E-ual *go

2. Not equal to

i. Equal to or greater than

4. Equal to or less thar.

i. Equal to or bounded by



~AARECORD=) ,024 BITS

KSOCKJ f If 2Sf zif
CHARACTER =8 SITS

KEY REGISTER jKEY 21 EY 3III

CONTROL1
REGISTER ~I

SEARCH SEARCH
TYPE FOR TYPE FOR

KEY KEY~2 3

MASK
REGiSTER

Filture I Data Format An~d Stfarch Ragiuttes
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Although type 5 is obviously a combination of types 3 and 4, it iki included

as a separate algorithri because of its frequest use. It is interesting to

note that type 2 is the complement of type I. The word "complement" is

used in the sense that type 2 search can be performt. - by using type I and

vice versa. Types ? and 4 are not complemrntary. The complement of

type 3 is "less than", and that of type 4 is "greater than".

For several fields, the search types are designat.3d as follows.

I. Conjunctive search

2. Disjunctive search

The search algor'thms with respect to an individual field will be described

first, followed by the search algorithms of several fields.

i
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2.0 THE SEARCH ALGORITHMS FOR AN INDIVIDUAL FIELD

2.1 ALGORITHMS USING ONE TAG BIT PER WORD

(a) Equal to

The sequence of bit-by-bit search is immaterial.

Steps:

(1) Set the initial state of the tab bit T in each worda
be "I"'

(2) The state of the tag bit Ta is set to be "0", if

the bit Bi in the memory word is different from

the bit Ki in the key word. In other words, the tag

bit Ta is set to be "0", if Bi = 0, Ki = l, or if

Bi = 1, Ki = 0.

Otherwise, the tag bit remains the same. It should

be noted that once the tag bit Ta is in the "0" state,

it remains unchanged there throughout the search

sequence. t

(3) After the search sequence, the "equal to" criterion

is met in memory words with tag bit Ta being "I".

(b) Not Equal to

The sequence of bit-by-bit search is immaterial.

Steps:

(1) Set the initial state oi the tag bit Ta in each word

to be "0".

(2) The tag bit Ta is set to be ''1", if Bi = 0, Ki : 1 or if

Bi=l, Ki = 0.

Otherwise, the tag bit Ta remains unchanged.

(3) After the search sequence, the "not equal to'

criterion is met in the memory word with tag

bit Ta being "I".

The "not equal to" search can be accomplished by

using the "equal to" algorithm except that the "not

equal to" criterion is met in those words witl tag

bit Ta being "0".
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(c) Equal to or greater than

The sequence of bit-by-bit search must proceed from

the least significant to the most significant bits.

Steps:

(1) Set the initial state of tag bit Ta in each word to

be "I".

(2) The tag bit Ta is set to be "I", if Bi = 1, Ki =0.

The tag bit Ta is set to be"0", if Bi 0, Ki =.

Otherwise, the tag bit Ta remains unchanged.

(3) After the search sequence, the "equal to or greater

than" criterion is met in the word with tag bit Ta

beinc 'j'

It irs interesting to note that the "less than" criterion

is met in t'ose words with tag bit Ta being "0".

(d) Equal to or jess than

The sequence of bit-by-bit rearch is the same as that

in (c).

Steps:

(1) Set the initial state of tag bit Ta in each word to

be "1".

(2) The tag bit Ta is set to be "I", if Bi 0, Ki I.

The tag bit Ta is set to be ' 0", if Bi 1 , K i 0.

Otherwise, the tag bit Ta remains unchanged.

(3) After the search sequence the "equal to or less than"

criterion is met in the word with tag bit Ta being "I'".

4 It should be obvious that the "greater than" :;'iterion

is met in the word with tag bit T. being "0".

2. 2 ALGORITHMS USING TWO TAG BITS-PER WORD

(a) Bounded Search

The bits in the hey words.are represented by M (lower

limit) and K (upperlimit),, so the data hleld satisfiec

the. criterion:

M 1B K



p

Steps:

(1) The initial states of the tag bits Ta and Tb in each

word are both set to be "1".

(2) Tag bit TJ'a is set to be "I" if, Bi 0, Ki = 1, and

set to be "0", if Bk = 1, K. 0.

Tag b.t rb is set to be "1", if Bi 1 , Mi = 0, and

set to be "0", if Bi = 0, Mi = 1.
Otherwise, the tag bits Ta and Tb remain unchanged.

(3) The final states of both Ta and Tb being "I", indicate

the "equal to or bounded" criterion is met in the memory

word.

0
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3. 0 THE SEARCH ALGORITHMS FOR SEVERAL FIELDS

When a number of different types of searches are performed

on different fields in a record, it is possible to use only

three tag bits per word for the following special cases:

3.1 CONJUNCTIVE SEARCHES

All the different types of searches are to be met, i.e.,
the "AND" search of

(Type SO) (Type SI) (Type $2) (Type Sn)

where So, S1, Sn can be any of the five types of searches

described previously.

Steps:

(1) Set Tc to be "P.

(2) Do search Type So, Type SI ---- Type Sn.

Transfer Ta to Tc, if Ta = 0.

(3) Transfer Tb to Tc, if Tbi0-

(4) The final state of Tc being "1" indicates that the

conjunctive search is met.

A special case exists if all searches are "equal to"

and conjunctive over the fields, which requires only

one tag bit.

3. 2 DISJUNCTIVE SEARCHES

At least one of the different types of searches are to be

met, i.e. , the "OR search" of.

(Type %) + (Type Sl) + (Type S2 ) ---- + (Type Sn)

Steps:

(1) Set Tc to be "0"t.

(2) Do search Type So. Type S1. ---- Type Sn

(3) Transfer Ta to Tc, if Ta a 1.

(4) Transfer Tb to Tat if Tb - 0.

(5) The final state of Tc being "I" indicates the fulfillment

of the disjunctive search.

One of the special cases in disjunctive search is

that all types of searches are "equal to" which requires

only two tag bits.
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4.0 LOGIC IMPLEMENTATIONS FOR THE SEARCH ALGORITHMS

The word logic between the disc track and its associative memory word

of tag bits is as shown in Figure ,...

The word logic consists of a sense amplifier, a set-reset-complement

flip-flop, five gates, and a word driver.

The bit logic functions required by the search algorithms are:

I. Clear the flip-flop each word.

2. Complement the flip-flop in each word.

3. Enable the word driver in each word.

There are two Enables, Enable Wo which would

cause the word driver to send a current to the

menmory word such that a "0" may be written at

any bit position with bit current present. Similarly,

Enable W1 is for the write of iA "I". Of course, the

writing can take place only if the flip-flop is in the

"I'' state.

4. Interrogate the bit in any one bit position. The

bit driver would send a current for a NDRO at

any one bit position.

5. Enable the bit driver in any one bit position. The

bit driver would send a current for a write at any

one bit position.

6. Enable the gate G for reading the disc. Disable

the gate G for transfer Ta or Tb to any one of the

64 tag bits C0 through C 6 3 .

4.1 ALGORITHMS FOR AN INDIVIDUAL FIELD USING ONE rAG
BIT PER WORD

(a) Equal to

Steps: (at the beginning of search)

1. Cir.ar FF in the word logic

4. Complnmwnt FF

i. Enable W1

Enlaole Da
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i
Steps: (at each bit positions'

1. Clean FF

Z. interrogate Bi (equivalent to Enable gate-G)

3. Complement FF (if and only if Ki 1.)

4. Enable W0

Da

138



(b) Not equal to
Steps (at the beginning of search)

I. Clear FF

2. Complement FF

3. Enable W0

Enable Da

Steps (at each bit position)

1. Clear FF

2. Interrogate Bi (equivalent to Enable gate-G)

3. Complement FF (if and only if KI 1.)

4. Enable WI

Enable Da

(c) Equal to or greater than

Steps (at the beginning of search)

1. Clear FF

"2. Complement FF

3. Enable WI

Enable Da

Steps (at each bit position)

I. Clear FF

2. Interrogate Bi (equivalent to Enable gate-G)

3. Complement FF (if and only if Kc fl,

4. Enable Wo (if and only if K =1)
Fm U~t W, (if and only if Ki = 0)

Enable Da

(d) Equal to or less than

Steps (at the beginning of search)

1. Clear FF

Z. Complement FF

3. Enable W

Enable Da

StepA (at each bit position)

I. Clear FF
2. Interrogate Bi (equivalent to Enable G-gate)

3. Complement F1 (if and only if Ki 2 1)

4. Enable W0 (if and only if Ki 0)

Enable WI (ii and only if Ki 1)
Enable D;%
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4.2 ALGORITHMS FOR AN INDIVIDUAL FIELD USING TWO TAG
BITS PER WORD

(a) Ejual to or bounded

Steps (at the beginning of search)

1. Clear FF

2. Complement FF

3., Enable WI

Enable Da

Enabie Db

Steps (at each bit position)

1. Clear FF

2. Interrogate Bi (equivalent to enable G-gate)

3. Complement FF (if and only if Ki 1)

4. Enable W0 (if and only if Ki = 0)
Enable W, (if and only if Ki = 1)
Enable Da

5. Complement FF (if and only if Mi = 0)

6. Enable W0 (if and only if Mi = 1)

Enable W, (if and only ifMi = 0)

Enable Db

ALGORITHMS FOR SEVERAL FIELDS USING THREE TAG

BITS PER WORD

(a) Conjunctive Searches

Steps (to transfer Ta = 0 to Cj after each search)

1. Clear FF

2. Interrogate Ta

3. Complement FF

4. Enable W0

Enable D.

Steps (to transfer Tb 0 to C3 after each search)

I. Clear FF

Z, Interrogate Tb

3. Complement FF
4. Enable W0

Enable Dcj
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(b) Disjunctive Searches

Steps (to transfer Ta I to C- after each search)

1. Clear FF

2. Interrogate T

3. Enable W

Enable Dc
J

Steps (to transfer Tb 0 to Cj after each search)
I. Cle~z FF

2. Interrogate Tb

3. C%'rmplement FF

4. Enable W0

Enable D.

C.
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5.1) SUMMARY

The foregoing search algorithms can be summarized with two charuts as

shown in Figure 3 and Figure 4.

Figure 3 shows the states of tag bits Ta and Tb in applying various search

algorithms for an individual field.

The mask, key and data bits are represe.ited by M, K and D respectively.

Figure 4 shows the states of Cj in applying various search algorithms

ftir several fields.

The search algorithms have been d-'scribed by using a minimum of tag

bits. However, it should be pointed out that the search time can be

reduced if more tag bits are used.

The word logic is normally not necessary in describing the search algorithms,

but it may help to understand the algorithms. Furthermore the word logic j
may demand the change of logical implementation of the search algorithms.
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APPENDIX B

DDC TYPE SEARCH IN AFP-2

Described in this appendix are the mechanization and functioning of

an associative file processor, specifically tailored to a Defence

Documentation Centor (DDC, formerly ASTIA) type of problem of

document retrieval in response to a priority ordered set of

descriptors. The application of an associative fi3 processor

(AFP-I) to this problem was discussed in the previous Librascope

Study Report (Ref-, Section 2). It is deemed worth while to in-

clude the cmonurative performance of AFPI with that of the processor

(AFP-2) ascribed in this report.

* A simplified statement of the problem is as follows: Several

/ hundred thousand documonts constitute a library from which requests

for bibliographies are to be honored. Associated with each document

is a shorý list of applicable descriptors ( 8 ave., 20 max. in DDC)

chosen from a relatively static vocabulary of several thousand defined

descriptors ( 7000 in DD(). A retrieval request is put in the form

af a list of descriptors and is matched against the library, evo:ing

matching doauments.

In practice, a problem arises in that the retrLeval reques• rway b

too general or too pecific, i.e., it may evoke too many documew Ls,

or too few (e.S., none). Consequently, a priority is asnigied to

the deseriptors in the retrieval reque3t, and they are uaed in seoquence

to narrow the net of evoked documents to an accept.able number. A



relevancy level of the document descriptors in the library is

also utilized, but this is a minor complication and will not be

!! !IItreated here,

in applying an associative file processor to the retrieval

problem, the first consideration is that in a document's descrip-

tor list, a given disoriptor may appear anywhere, i.e., first,

second or last. Fortunately, with a well defined descriptor

vocabulary, descriptors can be encoded into fixed length fields,

and, since there is a maximum number allowable to any document,

each document can be represented by a fixed length record.

Th. document retrieval process is basically a conjunction of dis-

Junctive searches, as referred to in section 2.3.8.2. That is, the

search is conducted as follows: The first retrieval descriptor is

loaded into every possible field ot the key register. Then a

search is performed, leaving compare flags set if any field matches

(disjunction). Then the next descriptor is loaded and treated

similarly. The search then leaves those compare flags where some

field matches the second descriptor (qonjunction of disjunctions).

Actually, the mechanization may be thought of more siXly as

follows: The compare flags are initially all set on. Then each

search sets the compare flags off for those records where the

descriptor was not found (regardless of position). Thus, the



number of compare flags is reduced with each search, until an

acceptable number of documents are flagged.

As was discussed in Section 2.3.8.2, there is a tradeoff of

associative memory size and retrieval speed. That is, the most

cost effective system may well. search only a fraction of the

total disc memuory per revolution., and take correspondingly many

revolutions per descriptor search. It is possible, in this case,

to store compare flags on the disc, after each descriptor search,

rather than in the associative memory, as noted In section 2.3.8.2.

on the other hand,, the associative memory word length could be

expanded to accommodate all of the compare flags. However, this

seems unlikely to be economical in view of the per-bit cost of

associative versus disc memories.

The difference in performance between APP-I and AFP-2 is dependent

on the following factors: APP-I searched the whole disc memory

content on all retrieval descriptors in one revolution. The AFP-2

requires k d revolutions, where 1/k of the disc tracks are searched

at once, and there are d retrieval descriptors. However, offsetting

the speed disadvantage of AFP-2, is the fact that the compare flag

count is available at each stage of the search, so it can be stopped

as desired. and an efficient readcnit of qualifying document numbers

is possible. neither of thene advantages was a feature of the LIP-I

d8sig.
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APPENDIX C
A WOVEN PLATED-WIRE ASSOCIATIVE MEMORY

By: r,..H. Fuller, J. C. Tu and R. M. Bird
Genereal Precision Inc, Librascope Group

1. 0 INTRODUCTION 1) Stored information may be non-destructively
read, generating search output voltages which

This paper describes an organization and are significantly larger than have been ob-
discusses circuits for an~ associative (parallel tained with other film memoriea. Highly
search) Memory using wovenl plated-wire mem- iterated word-sense amplifioxs may thus be
ory elements, as initially developed by TOKO, realized as integrated circuits.
Inc. of Tokyo, Japan, and now available at
Librascope. This design allows fabrication of 2) Word currents, which may be required with
moderate -capacity airborne associative memnor- high multiplicity during multiwrite, are small.
les having high processing speeds together with In our design, these currents are simply
small size, weight, power and cost. The mem- generated by magnetic cores set from word-
ory is operable over a wide temperature range. sen*e amplifiers.
Highly iterated word electronics are realized 3) Writing in )hoth conventional and multiwrite
economically through the use of integrated modes is much faster, by a factor of 10 to 30,
circuits and magnetic elements. Novel design =,d requires less power than for other known
features include the use of batch -fabricated non-destructi'v* memory elements.
j.'ated-wiro memory elements, bit-parallel
readout from an associative organization of 4j The memory may be destructively read in a
these elements, and the use of magnetic cores conventional bit-parallel word-aerial mode.
in word logic to allow simultaneous writing into 5) Array cost iL now much loe.s by a factor of
selected words. Suitable tasks for such assoc- 10, than for discrete elemnent arrays and will
iative memories are discussed. Important decreas as woven planes are produced in
characteristics of the Librascope associative volume (perhaps to a factor of 100)
memory are as follows:

In Section I of this paper, we review the
1) Stored data may be located on the basis of characteristics of platedwire elements andtcontent which is evaluated simultaneously arrays and characterize arrays for associative

over all stored words, applications. In Section 3. we describe an
2) Memory word content may be specified to be organisation and a command set for a plated.

equal to, greater than, or less than a key wire associative memory. Memory circuit
word, considerations are discussed in Section 4. In

the concluding section, plated-wire associative
3) Responding words (i. a., words satisfying a memories ate compared with competing reali.

search) may be read out or may be rewritten aations and Potential applications for these
in a bit-parallel mode, memories are discussed.

4) Tor multiple responses, words may be ~ ~ PAE EOYEEET N
accessed sequentially for reading or writing. Z LT0WR ZAXYZZ4NSA

5) All responding words may be rewritten
simultaneously in same or all bits (i. a.. 4 . 1 MEMORY ELEMENTS
multiwrite).

The woven memory plane uses a memory
The efficiency of associative memory toch- element te which permalloy film is plated on a

aiques is closely dependent upon the character- copper wire with current flowing in the wire to
istics of the memory elemtv .* msod for their create a circumferential easy axils of magneti-
implementation. The uocreaoed logic complex - satina. The copper substrate serves as beth
ity of associative memories, over conventional a digit drive and sense line for information
coordinate addressed memories, will lead to stored in the permalloy film. The flux path is
excessive system cost unless Inexpensive high. closed for the easy axis in such a manner that
performance elements sue used in the memory demagnetiaution does sot occur &PAd couipling to
array. "he Librascope associative memory the digit drive-sens lIne I* high. The penvm-

*array consists of pe tonalloy -plated copper alloy film, switches in a rotationtal mode, and
*vits* woven together with insulated copper thus allows emtremely rapid reading anidwriting.
wires to form a wire mesh matrix as shown tn The combination of shape anisotropy. due to
figure I. Group* of insulated wires are inter- Cylindrical gearnetry of the folm&W dAtheoild
connected to form multi-tarn digit coils. bite induced anisotropy introduced in Plaiiea.. gives
are stored in pe rmalloy -plated wIres at each small skew sad dispersoa fromn tON :'.0 e&ay
inttersectio With A Word 0oiL. Plated wire j# axes, and thus provides a good epe. *Iag margin
a form of magnetic film memory wjpe Ida.fonodetuieredt. ucfaiain
tages have been widely recognieed." "* tehniqus art used both in platiag tha wit* mod
but has only recently become available to the in weaviftg the planes.
memory system desig"er. These plated-wire
elements are of interest to to~ociative Memory The intformation state of a bit call Is eon-
arrays for the followiag reastons: destructivetly sensd by passinge a current

Presented at: NAECON. MAY 1965 lig9



through a coil of drive wires orthogonal to the Electrical specifications for a typical woven
plated wires. This current establishes an axial memory plane are shown in Table 1.
field, less than the anisotropic field Hk, and TABLE!
rotates the magnetization vector into a hard
direction by an angle less than 90". The sign Specifications for a Woven Memory Plane
of voltage induced in the plated wire indicates
the original circumferential flux direction of Word Write Current 1 50 me
the film (figure 2). When coil current is Word Read Current1 I wr 100 me
removed, the mapetization vector returns to wr
its initial state, inducing a voltage uf opposite Digit write Current1 I dw 00 ma
polarity in the plated wire. Information is D I
written Into the wire by coincidence of an axial Diri Readr Current 150 ma
field. les than Hk, with a circumferential Word-Line Sense Voltage 2  S my
field loes than Hc. The final information state Bit-Line Sense Voltage 5 my
of the film is determined by the direction of
the circumferential field; hence by the direc. IThis notation applies to associative organiza-
tion of the digit current flowing in the plated tion of the plane. as in figure 1.
wire.

2. 2 MEMORY PLANES ZRise time for interrogate current Idr is ZOO ns.

To form woven memory planes, plated 2,) ASSOCIATIVE ARRAYS
wires are woven together with insulated drive A practical requirement for associative
lines into a cloth-line mat. using equipment arrays is the ability to search the array with-
similar to ordinary textile weaving equipment. 2ut disturbing its Information content. ThePlated wires run in the weft direction of the tdstbn i nor tonote.Th
weave; insulated wires run in the warp direct response of each memory word to a search musttiwe. The mat is then mounted on a printed be separately distinguishable. Memory elementscircuit board to form a memory plane. Toed must, therefore, be capable of NDRO operationIncu, in cooperation with Koryusal Denehin with NDRO outputs appearing on word lines.Demiva Company, perfected both platien Since NDRO outputs appear on plated wires inwoven planes, plated wires must serve as word
processes and weaving processes for this typo lines in an associative array (see figure 1).
of memotiry and TOKO now has production This contrasts with a conventional coordinate-
capability for woven planes. addressed organization in which plated wires

* Librascope will manufacture memory planes serve as digt lines.
and systems for sale in the United States. We Equality search is implemented in a word-
have designed and experimentally verified paral it-searchio i spleuerted in
several memory systems using TOCO planes, parallel, bit-serial fashion as illustraed In
and the resulting evaluation has pointed the figure 3. A search key and four stored words,
way toward the next generation of improved WI - W4 are shown in figure 3a. Digit

planes and memory systems. These systems currents (figure 3b). corresponding to "l's" in

include a submicrosecond NDRO memory 5 and the key. are turned on simultaneously during
the associative memory reported herein, Our a presearch period. During search time, digit
evaluation of woven planes shows that the currents IDI - trD4 are changed sequentiallyweavain technique offers advantages in each of ti. currents are turned on if initially off andthese systami over techniques ueing simple conversely). Recall. (figure 2). that bits star-
strip drsvems liesri teheiqfollo ing areas: ing 110" have negative outputs during the fall ofstrip drive lines in the following areas: the reading current. A word which mismatches
1) Density of bits along a plated wire may be the key in some bit position will have a nega-

ensty ofbitsangreas pated withoutinterence tive output voltage cw. when the mismatching
sbnewhat increaed without interference bit is searched. For words matching the key

property desgened woven drive lines t llow (word W4 of figure 4), cw is positive at all

a faster fall off in fringing drive field than bitsearchtimes, The described search alier.

do striplines. Packlgn densities of 2S bits ithm thus implements the "exclusive or"
pot inch have been achieved in woven planes function required for equality search. Several
P* compared to 10 bite pot inch reported algorithms 4re available to identify stored
aor strip line planes words larger (smaller) than a key. These

algorithm ht.ave been well described in the

a) Word drive current requirements are less- literature and will not be repeated here.
enid by the use of a multiturn word line.

It is desirable that words reoponding to a
$I Cost of manufacture appears less, due to search be read in bit-parallel ftaahlon. In this

the availability of mote highly automated reading mode, the Insulated digit wires act as
plane production techniques. TONO coil sense lines. This reading modse may be destruc-
has successfully expended conelderable live since words are reed sequentially and may
Production engineering effort to realise be rewritten alter reading. A navel sensint
coot ruductiofte possible writh weaving method was developed to meet this requirement.
techniques.
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All plated word lines are biased by a small hard- are established at matching words. Only those
axis field. A word-read current (figure 4), bits subject to both currents switch to the "I"
sufficient to cause incoherent rotation of the film, state. The process is repeated using "0"
is applied to a selected word line. Bits initially writing word currents to write selected bits of
in the "I" state switch to the zero state, inducing matching words to the "0" state.
a voltage into the digit line. Bits initially in the
"0" state are not changed and induce only a small Operating margins are improved if zll bits
voltage into the digit line. The word is rewritten of a column are rewritten simultaneously.
by applying a smaller current of opposite polar- Writing must now be serial by column over all
ity to the word line. This current, in coincidence altered columns. Prior to writing a column,
with digit currents on selected digit lines, re- its contents are read to the detector plane by
stores selected bit, of the word to the "1" state, a single column search. At matching words,

'ew data are inserted into detector 'blements,
3.0 ORGANIZATION AND COMMAND SET ann the entire column is then rewritten. This

method is more time-consuming and requires
The associative memory is organized as some complication of word electronics relative

shown in figure S. The data register buffers to the former method, but it requires less.
communication between this memory and other stringent control of memory plane characteris-
system components. The mask register indi- tics.
cates that portion of data register contents
which constitutes search criteria. The detector Word Read: This command reads matching
plane stores results of searches. The match words, sequenced by the match resolver, into
resolver allows sequential access to a multi- the data register. Execution of this command
plicity of matching words. The match indicator requires bit-oriented sense lines as well as
denotes the presence or absence of some match- the word-oriented sense lines used for match
ing word. A data word may be written or read detection. A bit-parallel destructive readout
through the data register. Selected bits of is obtained by passing a current of approximately
many data words may be rewritten simultaneously 100 ma down plated word lines. This current
by a multiwrite command. Equality searches switches all bits on this line to the "0" state
are implemented in a bit-serial mode. and, for bits previously in the "1" state, couples

signals in excess of Smv to the non-plated bit

A simplified 3-word by 4-bit search memory lines. This technique greatly simplifies reading
array is shown in figure 1. Bits of each word as compared with previously known methods
are stored along one plated wire, being defined which require bit-serial reading of a selected
at each intersection of a plated wire with a digit word through the plated word line. The word
coil. Each word has an associated detector read command may be given repeatedly following
element containing a sense amplifier, a match a single search to read sequentially all matching
storageelement. and circuitry for resolution words, each selected by the match resolver.
of multiple matches. Each word also has an
associated bipolar word driver which, in coin- Word Write: Contents of the data register, in
cidence with digit current, writes elements to bit positions unmasked by the mask register.
the "1" or "0" state. For NCRO reading, digit are written into some word. selection on the
current I11 is supplied and sense outputs are basis of a previous search, by match resolution
read from the plated-wire word line. circuitry. Word contents are unchanged in

masked bit positions, thus allowing selective
3.1 COMMAND 1ST FOR ASSOCIATIVE alteration of multiple fields stored in a single

MEMORY word.

Vait), Search: Digit currents are first The word is first cleared to "0" by a word
tished at 4ll unmasked "'" digits in the read command. Data in masked fields of the

search key. Digit currents are then altered word are read into the data register for re-
serially (i. e.. turned on for a "0" and off for a writing. New data are insertedin unmasked
"1") for all unmasked key bits. Digit drivers fields of the data register. Simultaneously. a

4 for "0'e" in the ;ey are then turned off. Miso word current is established with a polarity to
motching words are indicated by negative write "I's" in the selected word. The word
voltages in plated wires (figure 4). which set write command must be preceded by a word
initially cleared detector elements to the mis- read command.
matched sta*e. The match indicator then
denotes whether any matck exists. If several 4.0 CIRCUITRYI matches eiist, these may be accessAe• sequen.
tially by use of the match resolver ý1e*'crlbe¢ A discussion of circuitry in this paper Is
in Section 4. limited. because of space constraints, to two of

the most critical and costly circuits in the
Multiwrlte: This commend writes simultaneous- associative memory, the word circuitry and the
lyito ssa1cted bits of all matching words, match resolution circuitry.
Two methods for multiwritlni will be described.
For the first method, digit currents are entab- , I WORD CIRCUITRY
liched simultaneously Mt all bit columna. ,Aich
are to be written to "I-. In coifcidence with rigur# 6 Illuttrates the logic diagram for the
these currents. "I" writing word currents word electronics. The flip-flop is initially
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cleared to the $I,' state. Any serially sequenced e) Next, a half select current is sent down both
rmismatch on the bit line will reset the flip-flop the selected column line and all row lines, setting
to the 110" state. At the conclusion of the search those row registers corresponding to matched
operation, word flip-flops for matching words core@ for all row@ in the matched column.

reman inthe 1" sate.f) Next, as with the column registers, either

A novel word logic, shown in figure 7, use sequentia~l or high-speed, tree-type logic no~tworks
the wo agneic ores asshow, t repace are used to search through the row registers

the fli-fop manthe twor& "aND gtshoand th epword selecting matched rows. Knowing a matched irow
thie flihfown ine figur 6.ND gthes oeatind ihe asr for a particular matched column, then, deter-
drivershoni iue6 h prto sa mines the location of a matched word,

g) Steps (c) through Jf) are repeated by selecting
1) The output stage of the sense amplifier is a the next matched column intil all matched column

latching switch. It is initially cleared, registers have been found.
Z) Simultaneously with operation (1), cores 11011 S. 0 CONCLUSIONS

and "I" are reset in the direction of the
arrows by the reset switch common for all Associative computing methods have found
wordr. little use to date, due to their well-nigh prohibitive

3) The sense amplifier is strobed to eliminate cost. Nevertheless, their applications are many
spurious signals occuring at times other and &wait only a significant reduction in the cost
than a search cycle, per storage bit an well as a simplified realisa-

4) O an on misatc. cres 10"and"I"tion of t)~e word electronics. Plated-wire assoc-
wil beseO n an one oismtchcr ies 0 adirect"n.ative memories afford a reduction in cost per

willbe et i a ountrclckwie drectonstorage bit by a factor of the order of ZO to 1.
5) After the search cycle, a "I" or "10" may be The magnetic logic implementation for the word

written for matched words by setting either electronics, which has been presented, permits
the set "I" or aet "0" switch respectively approximately a 10-to-I cost reduction for these
which are common for all words, circuits. These advantages permit the develop-

ment engineer to take a fresh look at associative
This magnetic logic substantially reduces computing methods as solutions to a wide range

complexity of word circuitry and thus cost of an of data processing problems.
associAtive memory system.

Plated -wire realizations afford advantages,
4. 2 MATCH RESOLUTION CIRCUITRY other than cost reduction. They provide large

NDRO outputs and employ small word write
This circuit o~quentially addresses matched currents. Writing selected bits into many words

words in the metrory so that each can be read simultaneously is possible because of the small
or written into. write power requirements. The imnportance of

this mi~dtiwrits as an associative processing
One type of match resolution circuit, repro- operation has heen stressed by several investi-

"senting a compromise between high speed arnd &store&. 9. Both write times &0i memory search
cost is 4w~ two-dimec.isional type shown in figure times are significantly faster than for discrete
4. The match resolution circuit is implemented maginetic elements. 10
by a matrix of magjietic cores which are set by
the matLhed word output*. Each core has five Librascope has extensively studiedl associgtive-
threaded wirer; one from a particular memory processing techniques, both under contract from
word, one each fromn the row driver and row RAC.C and under independent .'.ornpany funding.
rt-gister. and one each from the column driver Our estudies and those of other3 show associative
and column riegister. The operations are as processing tochniq jes to be useful in visual
follows: pattern recognitiort'. 9 -11 , iin solution of partial

differential equatiaons in Eliot pulse train
a) Before an associative memory search oper- separation. and itý# variety of information

ation is started. all matrix cores and column retrieval systems,". Use of the$* techniques is
registers are cleared to the matched state. indicated whenever some seq,ý*%Ct of compuAter

b) After tho search operation, a1l mism-atched arithmetic or logic command. is to be exe~cuted
words set their appropriate cares to the mis- indel'endently over many set# of data elements.
matched state. in turn. these cor**saet their The parallealism. inherent in associutive pro-
C1rresopkmdiat column registers to the mismatch eassing. allows the commendA *equenct to be

*ItW executed simulteanoeoly over all data seets. The
speed gain over cvention400al sequential techniques

c) Next, tither sequentia or high-speed. tree. Can be Very large if A high 4egri1e Of ParalillIsmn
type ologic netWorkiS &to USed to Select the first is allowed by the algorithm chosen for problem
wnatched column registert (startiog from RI) solution. Such is the case ini all ptoblmes
which was We by the cot* or cores in the corrve- referenced above.
pavidinit column during the operation in' Ib).

4) All row registers are theni cleared to the
Mismatch state.
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APPENDIX D

PROGRAM IN MACHINE LANGUAGE CONTROL

FOR GENERAL ASSIGNMENT PROBLEM
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